Residual Flows
for Invertible Generative Modeling

Ricky T. Q. Chen, Jens Behrmann,
David Duvenaud, Jörn-Henrik Jacobsen
Invertible Residual Networks (i-ResNet)

It can be shown that residual blocks

\[y = f(x) = x + g(x) \]

can be inverted by fixed-point iteration

\[x^{(i)} = y - g(x^{(i-1)}) \]

and has a unique inverse (i.e. invertible) if

\[|g(x) - g(y)| < |x - y| \]

(i.e. Lipschitz. Enforced with spectral normalization.)

(Behrmann et al. 2019)
Applying Change of Variables to i-ResNets

If

$$y = f(x) = x + g(x)$$

Then

$$\log p(x) = \log p(f(x)) + \log \left| \det \frac{df(x)}{dx} \right|$$

$$\log p(x) = \log p(f(x)) + \sum_{i=1}^{\infty} \frac{(-1)^{k+1}}{k} \text{tr} \left(\left[J_g(x) \right]^k \right)$$

(Behrmann et al. 2019)
Unbiased Estimation of Log Probability Density

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k$$

(Require $\sum_{k=1}^{\infty} |\Delta_k| < \infty$)
Unbiased Estimation of Log Probability Density

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k$$

(Require $\sum_{k=1}^{\infty} |\Delta_k| < \infty$)

Flip a coin b with probability q.

$$\mathbb{E} \left[\Delta_1 + \right]$$
Unbiased Estimation of Log Probability Density

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

\[\sum_{k=1}^{\infty} \Delta_k \]

(Require \(\sum_{k=1}^{\infty} |\Delta_k| < \infty \))

Flip a coin \(b \) with probability \(q \).

\[\mathbb{E} \left[\Delta_1 + \begin{bmatrix} \mathbb{1}_{b=0} + \end{bmatrix} \mathbb{1}_{b=1} \right] \]
Unbiased Estimation of Log Probability Density

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k$$

(Require $\sum_{k=1}^{\infty} |\Delta_k| < \infty$)

Flip a coin b with probability q.

$$\mathbb{E} \left[\Delta_1 + \left[\frac{1}{1-q} \sum_{k=2}^{\infty} \Delta_k \right] \mathbb{1}_{b=0} + [0] \mathbb{1}_{b=1} \right]$$
Unbiased Estimation of Log Probability Density

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k$$

(Require $$\sum_{k=1}^{\infty} |\Delta_k| < \infty$$)

Flip a coin with probability $$q$$.

$$\mathbb{E} \left[\Delta_1 + \left[\frac{1}{1-q} \sum_{k=2}^{\infty} \Delta_k \right] \mathbbm{1}_{b=0} + [0] \mathbbm{1}_{b=1} \right]$$

$$= \Delta_1 + \left[\frac{1}{1-q} \sum_{k=2}^{\infty} \Delta_k \right] (1 - q)$$

$$= \sum_{k=1}^{\infty} \Delta_k$$

Has probability $$q$$ of being evaluated in finite time.
Unbiased Estimation of Log Probability Density

If we repeatedly apply the same procedure \textit{infinitely many times}, we obtain an unbiased estimator of the infinite series.

\[
\sum_{k=1}^{\infty} \Delta_k = \mathbb{E}_{n \sim p(N)} \left[\sum_{k=1}^{n} \frac{\Delta_k}{\mathbb{P}(N \geq k)} \right]
\]

Directly sample the first successful coin toss.

k-th term is weighted by prob. of seeing \(\geq k \) tosses.

Residual Flow:

\[
\log p(x) = \log p(f(x)) + \mathbb{E}_{n, \nu} \left[\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \frac{\nu^T [J_g(x)]^k \nu}{\mathbb{P}(N \geq k)} \right]
\]

Computed in \textit{finite time} with prob. 1!!
Decoupled Training Objective & Estimation Bias

Unbiased but... variable compute and memory!

- i-ResNet \textbf{(Biased Train Estimate)}
- Residual Flow \textbf{(Unbiased Train Estimate)}
- i-ResNet \textbf{(Actual Test Value)}
- Residual Flow \textbf{(Actual Test Value)}
Constant-Memory Backpropagation

Naive gradient computation:

\[E_{n,v} \left[\sum_{k=1}^{n} \alpha_k \frac{\partial v^T [J_g(x)]^k}{\partial \theta} v \right] \]

Alternative (Neumann series) gradient formulation:

\[E_{n,v} \left[\left(\sum_{k=1}^{n} \alpha_k v^T [J_g(x)]^k \right) \frac{\partial J_g(x)v}{\partial \theta} \right] \]

Don’t need to store random number of terms in memory!!
Density Estimation Experiments

Contribution Summary:
- Unbiased estimator of log-likelihood.
- Memory-efficient computation of log-likelihood.
- LipSwish activation function [not discussed in talk].

<table>
<thead>
<tr>
<th>Model</th>
<th>MNIST</th>
<th>CIFAR-10</th>
<th>ImageNet 32</th>
<th>ImageNet 64</th>
<th>CelebA-HQ 256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real NVP (Dinh et al., 2017)</td>
<td>1.06</td>
<td>3.49</td>
<td>4.28</td>
<td>3.98</td>
<td>—</td>
</tr>
<tr>
<td>Glow (Kingma and Dhariwal, 2018)</td>
<td>1.05</td>
<td>3.35</td>
<td>4.09</td>
<td>3.81</td>
<td>1.03</td>
</tr>
<tr>
<td>FFJORD (Grathwohl et al., 2019)</td>
<td>0.99</td>
<td>3.40</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flow++ (Ho et al., 2019)</td>
<td>—</td>
<td>3.29 (3.09)</td>
<td>— (3.86)</td>
<td>— (3.69)</td>
<td>—</td>
</tr>
<tr>
<td>i-ResNet (Behrmann et al., 2019)</td>
<td>1.05</td>
<td>3.45</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Residual Flow (Ours)</td>
<td>0.970</td>
<td>3.280</td>
<td>4.010</td>
<td>3.757</td>
<td>0.992</td>
</tr>
</tbody>
</table>

(LipSwish)
Density Estimation Experiments

Contribution Summary:
- Unbiased estimator of log-likelihood.
- Memory-efficient computation of log-likelihood.
- LipSwish activation function [not discussed in talk].

<table>
<thead>
<tr>
<th>Training Setting</th>
<th>MNIST</th>
<th>CIFAR-10</th>
<th>CIFAR-10†</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-ResNet + ELU</td>
<td>1.05</td>
<td>3.45</td>
<td>3.66~4.78</td>
</tr>
<tr>
<td>Residual Flow + ELU</td>
<td>1.00</td>
<td>3.40</td>
<td>3.32</td>
</tr>
<tr>
<td>Residual Flow + LipSwish</td>
<td>0.97</td>
<td>3.39</td>
<td>3.28</td>
</tr>
</tbody>
</table>

Table: Ablation results. †Larger network.
Qualitative Samples

CelebA:

Data

Residual Flow

CIFAR10:

Data

Residual Flow

PixelCNN

Flow++

<table>
<thead>
<tr>
<th>Model</th>
<th>CIFAR10 FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PixelCNN*</td>
<td>65.93</td>
</tr>
<tr>
<td>PixelIQN*</td>
<td>49.46</td>
</tr>
<tr>
<td>i-ResNet</td>
<td>65.01</td>
</tr>
<tr>
<td>Residual Flow</td>
<td>46.37</td>
</tr>
<tr>
<td>DCGAN*</td>
<td>37.11</td>
</tr>
<tr>
<td>WGAN-GP*</td>
<td>36.40</td>
</tr>
</tbody>
</table>
Qualitative Samples

CelebA:

Data

Residual Flow

CelebA-HQ 256x256:

<table>
<thead>
<tr>
<th>Model</th>
<th>CIFAR10 FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PixelCNN*</td>
<td>65.93</td>
</tr>
<tr>
<td>PixelIQN*</td>
<td>49.46</td>
</tr>
<tr>
<td>i-ResNet</td>
<td>65.01</td>
</tr>
<tr>
<td>Residual Flow</td>
<td>46.37</td>
</tr>
<tr>
<td>DCGAN*</td>
<td>37.11</td>
</tr>
<tr>
<td>WGAN-GP*</td>
<td>36.40</td>
</tr>
</tbody>
</table>
Thanks for Listening!

Code and pretrained models: https://github.com/rtqichen/residual-flows

Co-authors:

Jens Behrmann
David Duvenaud
Jörn-Henrik Jacobsen