An adaptive KNN Classifier

Akshay Balsubramani, Stanford, Sanjoy Dasgupta & Yoav Freund, UCSD, Shay Moran, Google AI Princeton

kNN: classify x by the majority vote of its k nearest neighbors in the training set.

- kNN Converges to Bayes Optimal as $n \to \infty$, $k \to \infty$, $k/n \to 0$
- How should we choose k for a finite n?
- Different k for different points?
- Should we trust a 15:14 ratio?

$k=14+15=29$
- 14 red
- 15 blue
Classify as blue
Main Idea: Modify k-NN Algorithm by Choosing k Pointwise

- **Adaptive k-NN:**
 - Iterate over the neighbors of x from nearest to furthest and query their labels.
 - If one of the label-classes obtains a significant majority then exit the loop and use this label to classify x.

Prediction rule =

$$
\begin{cases}
+1 & \text{if } k_+ - k_- > +A\sqrt{k_+ + k_-} \\
? & \text{if } |k_+ - k_-| < A\sqrt{k_+ + k_-} \\
-1 & \text{if } k_+ - k_- < -A\sqrt{k_+ + k_-}
\end{cases}
$$
Theoretical Results

1. Adaptive k-NN rule is consistent (i.e. achieves Bayes optimality in the limit).
2. Adaptive k-NN rule is competitive with Classical k-NN with the best choice of k
3. Pointwise Generalization Bounds
 - Number of examples required to classify x correctly depends on its “local-advantage” (a formal notion introduced in the paper).
 - Points far from the boundary are correctly classified fast.

Experimental Results

Not-MNIST