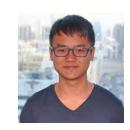


Greed is Bad or Better Exploration with Optimistic Actor Critic

Kamil Ciosek Microsoft Research Cambridge

Kamil Ciosek



Quan Vuong MSR Cambridge PhD student, UCSD

Robert Loftin MSR Cambridge

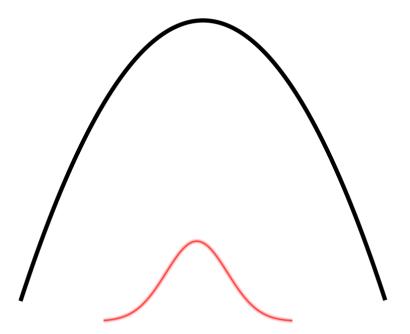
Katja Hofmann MSR Cambridge

Policy Gradients are greedy

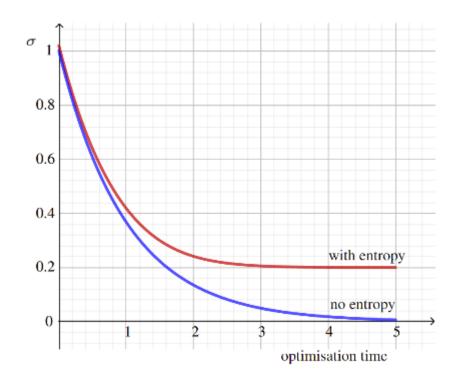
Policy gradients are greedy

Maximise $abla_{ heta}J$

What happens to the policy standard deviation?



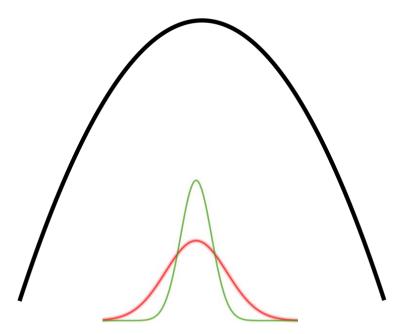
Consider a bandit with quadratic reward.



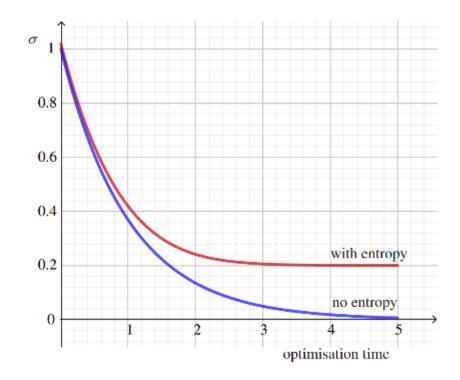
Policy gradients are greedy

Maximise $abla_{ heta}J$

What happens to the policy standard deviation?



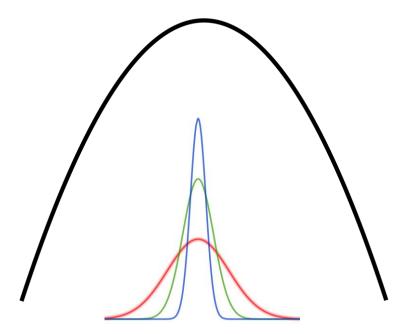
Consider a bandit with quadratic reward.



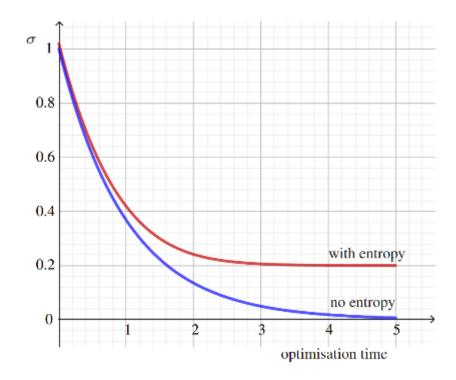
Policy gradients are greedy

Maximise $abla_{ heta}J$

What happens to the policy standard deviation?



Consider a bandit with quadratic reward.



Modern Policy Gradient Methods use a Lower bound

Lower bound on critic

if this is too large...

$$\hat{Q}(s_t, a_t) \leftarrow R(s_t, a_t) + \gamma \tilde{Q}(s_{t+1}, a) \quad a \sim \pi_T(\cdot | s_{t+1})$$

...this becomes too large

+ effect amplified by policy optimisation

Lower bound on critic

if this is too large...

$$\hat{Q}(s_t, a_t) \leftarrow R(s_t, a_t) + \gamma \tilde{Q}(s_{t+1}, a) \quad a \sim \pi_T(\cdot | s_{t+1})$$

...this becomes too large

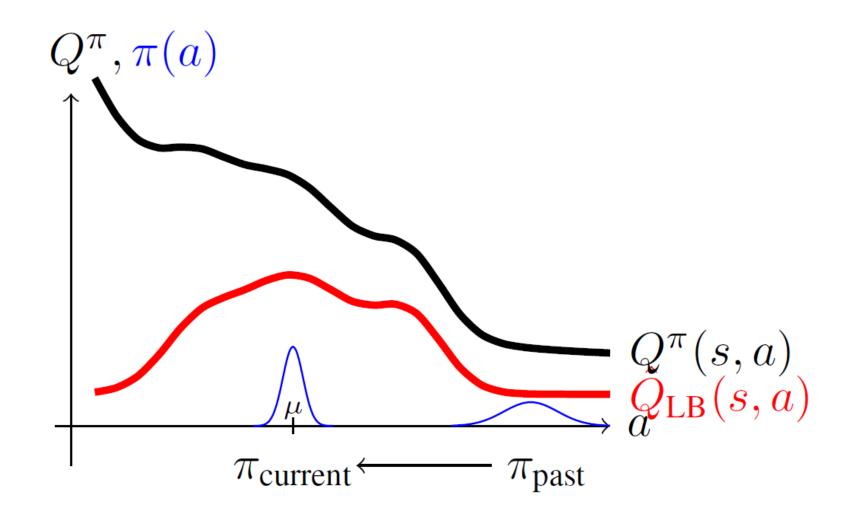
+ effect amplified by policy optimisation

$$\hat{Q}_{\text{LB}}^{\{1,2\}}(s_t, a_t) \leftarrow R(s_t, a_t) + \gamma \min(\check{Q}_{\text{LB}}^1(s_{t+1}, a), \check{Q}_{\text{LB}}^2(s_{t+1}, a))$$

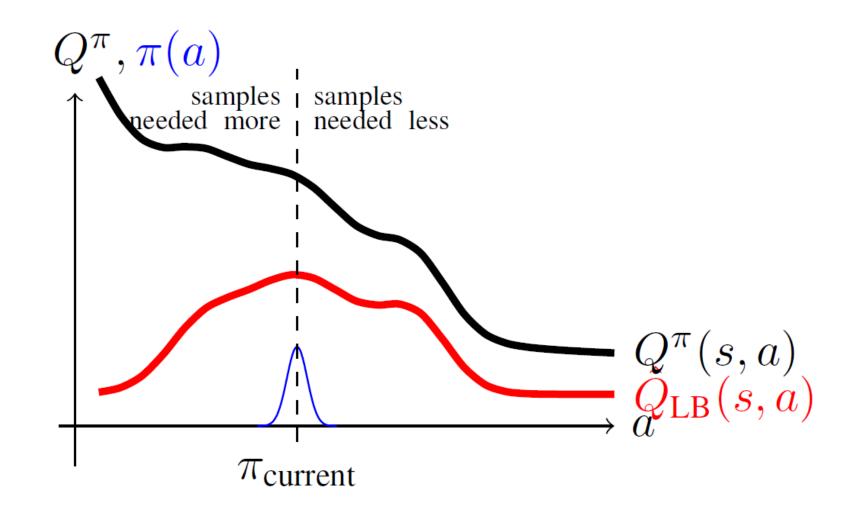
conservative update reduces overestimation

Greediness + Lower Bound Lead To Problems

First problem: pessimistic underexploration



Second problem: directional uninformedness



Solve these Problems by Exploring with Upper Bound

Use the bootstrap to make an upper bound.

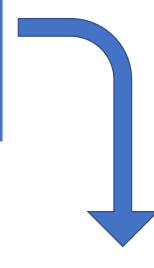
$$\mu_Q(s,a) = \frac{1}{2} \left(\hat{Q}_{\mathrm{LB}}^1(s,a) + \hat{Q}_{\mathrm{LB}}^2(s,a) \right)$$

$$\sigma_Q(s,a) = \sqrt{\sum_{i \in \{1,2\}} \frac{1}{2} \left(\hat{Q}_{\mathrm{LB}}^i(s,a) - \mu_Q(s,a) \right)^2}$$
 [level of optimism
$$\hat{Q}_{\mathrm{UB}}(s,a) = \mu_Q(s,a) + \beta_{\mathrm{UB}} \sigma_Q(s,a)$$

How to choose the exploration policy

We want a policy that:

- Is close to target policy.
- Maximises the critic upper bound.

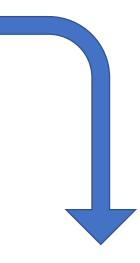


$$\mu_e, \Sigma_E = \underset{\substack{\mu, \Sigma:\\ \text{KL}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu_T, \Sigma_T)) \leq \delta}}{\arg \max} E_{a \sim \mathcal{N}(\mu, \Sigma)} \left[\hat{Q}_{\text{UB}}(s, a) \right]$$

How to choose the exploration policy

We want a policy that:

- Is close to target policy.
- Maximises the critic upper bound.



$$\mu_{e}, \Sigma_{E} = \underset{\substack{\mu, \Sigma:\\ \text{KL}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu_{T}, \Sigma_{T})) \leq \delta}}{\operatorname{arg\,max}} E_{a \sim \mathcal{N}(\mu, \Sigma)} \left[\bar{Q}_{\text{UB}}(s, a) \right]$$

The OAC exploration policy (interpretation)

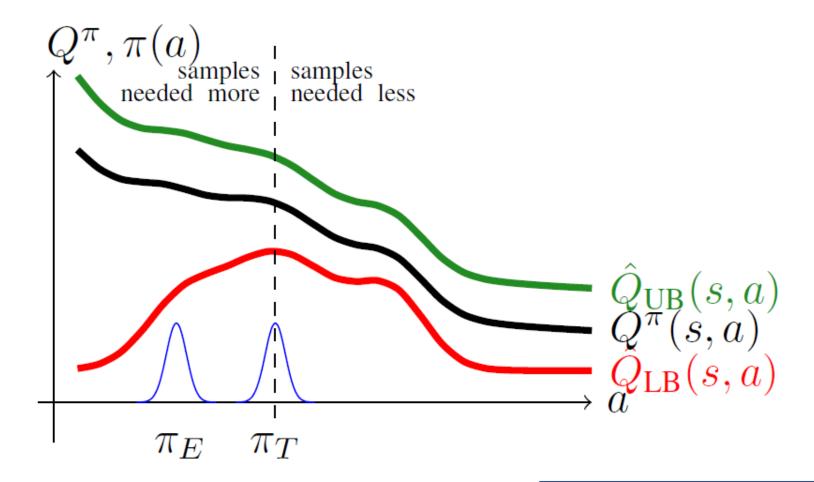
$$\pi_E = \mathcal{N}(\mu_E, \Sigma_E), \quad \mu_E = \mu_T + \frac{\sqrt{2\delta}}{\left\| \left[\nabla_a \hat{Q}_{\mathit{UB}}(s, a) \right]_{a = \mu_T} \right\|_{\Sigma_T}} \Sigma_T \left[\nabla_a \hat{Q}_{\mathit{UB}}(s, a) \right]_{a = \mu_T} \quad and \quad \Sigma_E = \Sigma_T.$$

$$\mathsf{shift}$$

OAC explores with a shifted policy!

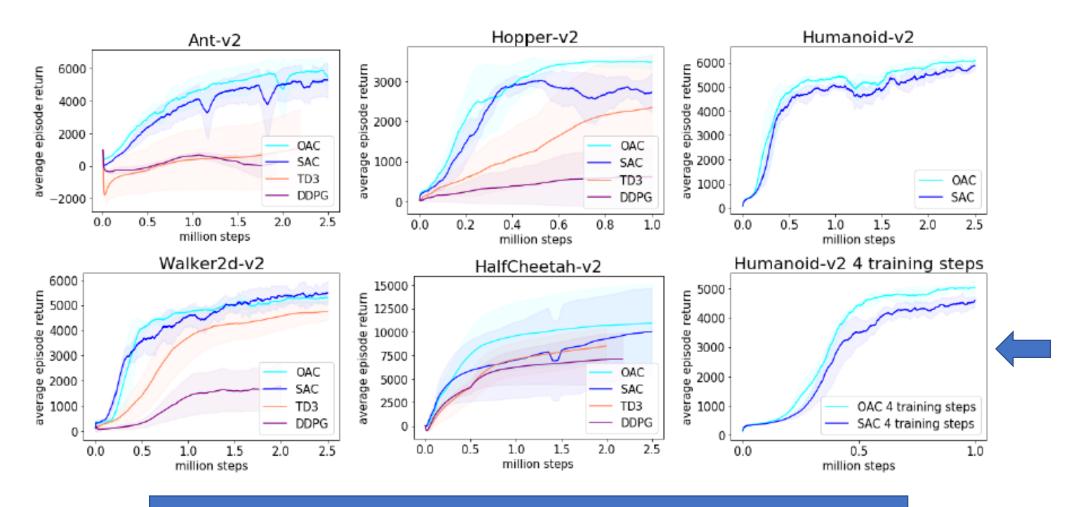
shift in the direction given by upper bound.

OAC explores efficiently



It works!

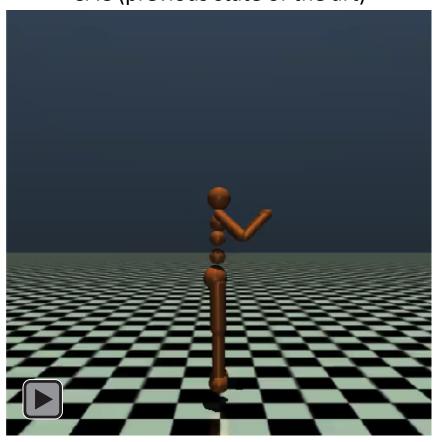
It works!



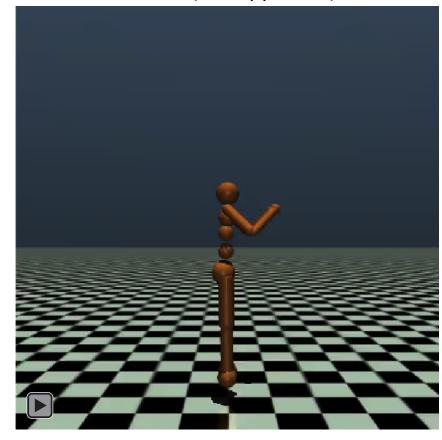
No hyperparameters were tuned on Humanoid!

Visual Comparison

SAC (previous state of the art)



OAC (our approach)



We have openings for interns, post-docs, researchers. Kamil.Ciosek@Microsoft.com

Talk to me at the poster session!
Poster #179, starting at 5:30PM, East Exhibition Hall B+C