# Fast structure learning with modular regularization

Greg Ver Steeg, Hrayr Harutyunyan, Daniel Moyer, Aram Galstyan

USC Viterbi School of Engineering Information Sciences Institute





## Information-theoretic idea for efficient modularity regularization



Suppose that variables approximately cluster into modules, one latent factor per module:

- Combinatorial search for the best structured model would be infeasible: exponentially many
- We re-formulate the learning problem as an unconstrained optimization whose global optima correspond to structured latent factor models

## Modular structure recovery in high-d (with 300 samples)



## **Covariance estimation**

- If n (samples) terrible, terrible estimate
- But we can do better through priors: sparsity, independence, dim. red., *modularity*



### # wins on 51 real datasets from OpenML (best log-likelihood on test)

| This work        | 32/51 |
|------------------|-------|
| Ledoit-Wolf      | 18/51 |
| Sparse PCA       | 1/51  |
| Factor Analysis  | 1/51  |
| GLASSO (BigQUIC) | 0/51  |

## Estimating covariance from under-sampled stock market data



## **Interpretable modular** structure

| Factor | Stock ticker     | Sector/Industry                 |
|--------|------------------|---------------------------------|
| 0      | RF, KEY, FHN     | Bank holding (NYSE, large cap)  |
| 1      | ETN, IEX, ITW    | Industrial machinery            |
| 2      | GABC, LBAI, FBNC | Bank holding (NASDAQ, small caj |
| 3      | SPN, MRO, CRZO   | Oil & gas                       |
| 4      | AKR, BXP, HIW    | Real estate investment trusts   |
| 5      | CMS, ES, XEL     | Electric utilities              |
| 6      | POWI, LLTC, TXN  | Semiconductors                  |
| 7      | REGN, BMRN, CELG | Biotech pharmaceuticals         |
| 8      | BKE, JWN, M      | Retail, apparel                 |
| 9      | DHI, LEN, MTH    | Homebuilders                    |

Example latent factors appearing in stock market data





- Introduced an *information-theoretic optimization* to tractably discover *structured latent factor models*
- Theoretical bounds on sample complexity suggests a "blessing of dimensionality", recovering latent factors better in higher-d.
- Applications in latent factor discovery and covariance estimation useful in many domains: *neuroscience, finance,* and *gene expression*

#### Poster 16 - in a few minutes

Paper: <u>arxiv:1706.03353</u>, NeurIPS 2019 Contact: <u>hrayrh@isi.edu</u>, <u>gregv@isi.edu</u> Code:

<u>https://github.com/gregversteeg/LinearCorex</u> (numpy), <u>https://github.com/hrayrhar/T-CorEx</u> (PyTorch)

