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Implicit Regularization in Deep Learning
Mystery
DNNs generalize with no explicit regularization even when:

# of learned weights � # of training examples

Conventional Wisdom
Gradient-based optimization induces an implicit regularization

Question
Can we mathematically understand this effect in concrete settings?
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Setting: Matrix Completion
Matrix completion: recover low rank matrix given subset of entries

Netflix Prize

Denote observations by {bij}(i , j)∈Ω

Convex Programming Approach
Minimize `2 loss + nuclear norm regularization:

minW
∑

(i , j)∈Ω
(Wij − bij)2 + λ · ‖W ‖nuclear

Provably “optimal” ← if observations are sufficiently many
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Deep Matrix Factorization
Deep Learning Approach (“deep matrix factorization”)

Parameterize by depth N linear neural network and minimize `2 loss
with gradient descent (GD):

minW1...WN

∑
(i , j)∈Ω

(
(WNWN−1 · · ·W1)ij − bij

)2
↑

No explicit regularization!

Past Work (Gunasekar et al. 2017)
For depth 2 only:

minW1,W2

∑
(i , j)∈Ω

(
(W2W1)ij − bij

)2
Experiments: recovery often accurate
Conjecture: implicit regularization = nuclear norm minimization
Theorem: conjecture holds for certain restricted setting
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Our Results

Experiments
Depth ≥ 3 outperforms depth 2 outperforms nuclear norm minimization

Theory & Experiments
Evidence that:

Implicit regularization 6= nuclear norm minimization

Capturing implicit regularization via single norm may not be possible
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Our Results (cont’)

Theory & Experiments
Trajectory analysis for GD over deep matrix factorizations:

Depth makes singular vals move slower when small, faster when large
Theorem
With depth N (and small init) each singular val σr (t) evolves ∝ σr

2−2/N(t)

Leads to larger gaps between singular vals

See our poster: Thu 10:45AM–12:45PM, #245 THANK YOU!
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