Implicit Regularization in Deep Matrix Factorization

Sanjeev Arora † 1 Nadav Cohen § Wei Hu † Yuping Luo †

† Princeton University

[‡] Institute for Advanced Study

§ Tel Aviv University

Neural Information Processing Systems (NeurIPS) 2019

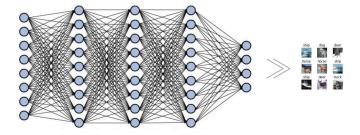
Supported by: NSF, ONR, Simons Foundation, Schmidt Foundation, Mozilla Research, Amazon Research, DARPA, SRC

Implicit Regularization in Deep Learning

Mystery

DNNs generalize with no explicit regularization even when:

of learned weights $\gg \#$ of training examples

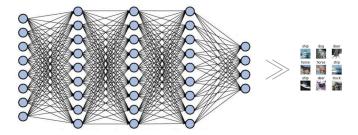


Implicit Regularization in Deep Learning

Mystery

DNNs generalize with no explicit regularization even when:

of learned weights $\gg \#$ of training examples



Conventional Wisdom

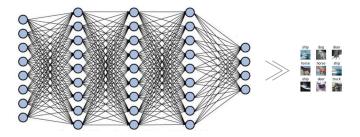
Gradient-based optimization induces an implicit regularization

Implicit Regularization in Deep Learning

Mystery

DNNs generalize with no explicit regularization even when:

of learned weights $\gg \#$ of training examples



Conventional Wisdom

Gradient-based optimization induces an implicit regularization

Question

Can we mathematically understand this effect in concrete settings?

Matrix completion: recover low rank matrix given subset of entries

	Avanças -	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

Matrix completion: recover low rank matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Matrix completion: recover low rank matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Convex Programming Approach

Matrix completion: recover low rank matrix given subset of entries

	Avanyans	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Convex Programming Approach

Minimize ℓ_2 loss + nuclear norm regularization:

$$\min_{W} \sum_{(i,j)\in\Omega} (W_{ij} - b_{ij})^2 + \lambda \cdot \|W\|_{nuclear}$$

Matrix completion: recover low rank matrix given subset of entries

	Avanyans	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Convex Programming Approach

Minimize ℓ_2 loss + nuclear norm regularization:

$$\min_{W} \sum_{(i,j) \in \Omega} (W_{ij} - b_{ij})^2 + \lambda \cdot \|W\|_{nuclear}$$

Provably "optimal"¹

¹ Cf. Candes & Recht 2008

Matrix completion: recover low rank matrix given subset of entries

	Avanyans	THEPRESTIGE	NOW YOU SEE ME	THE WOLF OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

Denote observations by $\{b_{ij}\}_{(i,j)\in\Omega}$

Convex Programming Approach

Minimize ℓ_2 loss + nuclear norm regularization:

$$\min_{W} \sum_{(i,j) \in \Omega} (W_{ij} - b_{ij})^2 + \lambda \cdot \|W\|_{nuclear}$$

Provably "optimal" \leftarrow if observations are sufficiently many

¹ Cf. Candes & Recht 2008

Deep Learning Approach ("deep matrix factorization")

Deep Learning Approach ("deep matrix factorization")

Parameterize by depth N linear neural network 1 and minimize ℓ_2 loss with gradient descent (GD):

$$\min_{W_1...W_N} \sum_{(i,j)\in\Omega} \left((W_N W_{N-1} \cdots W_1)_{ij} - b_{ij} \right)^2$$

¹ Cf. Saxe et al. 2014, Kawaguchi 2016, Advani & Saxe 2017, Hardt & Ma 2017, Laurent & Brecht 2018, Gunasekar et al. 2018, Ji & Telgarsky 2019, Lampinen & Ganguli 2019

Deep Learning Approach ("deep matrix factorization")

Parameterize by depth N linear neural network 1 and minimize ℓ_2 loss with gradient descent (GD):

$$\begin{array}{cc} \min_{W_1...W_N} & \sum_{(i,j) \in \Omega} \left((W_N W_{N-1} \cdots W_1)_{ij} - b_{ij} \right)^2 \\ & & \uparrow \\ & \text{No explicit regularization!} \end{array}$$

¹ Cf. Saxe et al. 2014, Kawaguchi 2016, Advani & Saxe 2017, Hardt & Ma 2017, Laurent & Brecht 2018, Gunasekar et al. 2018, Ji & Telgarsky 2019, Lampinen & Ganguli 2019

Deep Learning Approach ("deep matrix factorization")

Parameterize by depth N linear neural network 1 and minimize ℓ_2 loss with gradient descent (GD):

$$\begin{array}{cc} \min_{W_1...W_N} & \sum_{(i,j) \in \Omega} \left((W_N W_{N-1} \cdots W_1)_{ij} - b_{ij} \right)^2 \\ & & \uparrow \\ & \text{No explicit regularization!} \end{array}$$

Past Work (Gunasekar et al. 2017)

¹ Cf. Saxe et al. 2014, Kawaguchi 2016, Advani & Saxe 2017, Hardt & Ma 2017, Laurent & Brecht 2018, Gunasekar et al. 2018, Ji & Telgarsky 2019, Lampinen & Ganguli 2019

Deep Learning Approach ("deep matrix factorization")

Parameterize by depth N linear neural network 1 and minimize ℓ_2 loss with gradient descent (GD):

$$\min_{W_1...W_N} \sum_{(i,j)\in\Omega} ((W_N W_{N-1} \cdots W_1)_{ij} - b_{ij})^2$$
No explicit regularization!

Past Work (Gunasekar et al. 2017)

For depth 2 only:

$$\min_{W_1, W_2} \sum_{(i,j) \in \Omega} ((W_2 W_1)_{ij} - b_{ij})^2$$

¹ Cf. Saxe et al. 2014, Kawaguchi 2016, Advani & Saxe 2017, Hardt & Ma 2017, Laurent & Brecht 2018, Gunasekar et al. 2018, Ji & Telgarsky 2019, Lampinen & Ganguli 2019

Deep Learning Approach ("deep matrix factorization")

Parameterize by depth N linear neural network 1 and minimize ℓ_2 loss with gradient descent (GD):

$$\begin{array}{cc} \min_{W_1...W_N} & \sum_{(i,j) \in \Omega} \left((W_N W_{N-1} \cdots W_1)_{ij} - b_{ij} \right)^2 \\ & & \uparrow \\ & \text{No explicit regularization!} \end{array}$$

Past Work (Gunasekar et al. 2017)

For depth 2 only:

$$\min_{W_1,W_2} \sum_{(i,j) \in \Omega} ((W_2 W_1)_{ij} - b_{ij})^2$$

Experiments: recovery often accurate

¹ Cf. Saxe et al. 2014, Kawaguchi 2016, Advani & Saxe 2017, Hardt & Ma 2017, Laurent & Brecht 2018, Gunasekar et al. 2018, Ji & Telgarsky 2019, Lampinen & Ganguli 2019

Deep Learning Approach ("deep matrix factorization")

Parameterize by depth N linear neural network 1 and minimize ℓ_2 loss with gradient descent (GD):

$$\begin{array}{cc} \min_{W_1...W_N} & \sum_{(i,j) \in \Omega} \left((W_N W_{N-1} \cdots W_1)_{ij} - b_{ij} \right)^2 \\ & & \uparrow \\ & \text{No explicit regularization!} \end{array}$$

Past Work (Gunasekar et al. 2017)

For depth 2 only:

$$\min_{W_1,W_2} \sum_{(i,j) \in \Omega} ((W_2 W_1)_{ij} - b_{ij})^2$$

- Experiments: recovery often accurate
- <u>Conjecture</u>: implicit regularization = nuclear norm minimization

¹ Cf. Saxe et al. 2014, Kawaguchi 2016, Advani & Saxe 2017, Hardt & Ma 2017, Laurent & Brecht 2018, Gunasekar et al. 2018, Ji & Telgarsky 2019, Lampinen & Ganguli 2019

Deep Learning Approach ("deep matrix factorization")

Parameterize by depth N linear neural network 1 and minimize ℓ_2 loss with gradient descent (GD):

$$\begin{array}{cc} \min_{W_1...W_N} & \sum_{(i,j) \in \Omega} \left((W_N W_{N-1} \cdots W_1)_{ij} - b_{ij} \right)^2 \\ & & \uparrow \\ & \text{No explicit regularization!} \end{array}$$

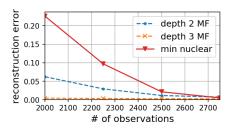
Past Work (Gunasekar et al. 2017)

For depth 2 only:

$$\min_{W_1,W_2} \sum_{(i,j) \in \Omega} ((W_2 W_1)_{ij} - b_{ij})^2$$

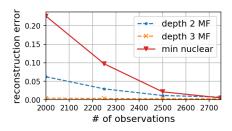
- Experiments: recovery often accurate
- <u>Conjecture</u>: implicit regularization = nuclear norm minimization
- Theorem: conjecture holds for certain restricted setting

¹ Cf. Saxe et al. 2014, Kawaguchi 2016, Advani & Saxe 2017, Hardt & Ma 2017, Laurent & Brecht 2018, Gunasekar et al. 2018, Ji & Telgarsky 2019, Lampinen & Ganguli 2019



Experiments

Depth \geq 3 outperforms depth 2 outperforms nuclear norm minimization

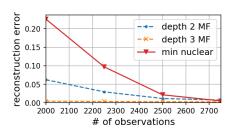


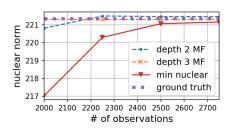
Experiments

Depth \geq 3 outperforms depth 2 outperforms nuclear norm minimization

Theory & Experiments

Evidence that:





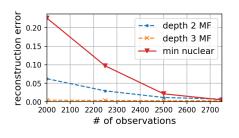
Experiments

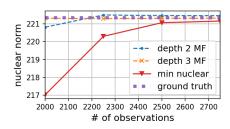
Depth ≥ 3 outperforms depth 2 outperforms nuclear norm minimization

Theory & Experiments

Evidence that:

• Implicit regularization \neq nuclear norm minimization





Experiments

Depth ≥ 3 outperforms depth 2 outperforms nuclear norm minimization

Theory & Experiments

Evidence that:

- Implicit regularization \neq nuclear norm minimization
- Capturing implicit regularization via single norm may not be possible

Theory & Experiments

Trajectory analysis for GD over deep matrix factorizations:

Theory & Experiments

Trajectory analysis for GD over deep matrix factorizations:

• Depth makes singular vals move slower when small, faster when large

Theorem

With depth N (and small init) each singular val $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$

Theory & Experiments

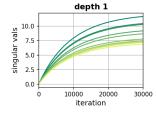
Trajectory analysis for GD over deep matrix factorizations:

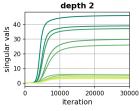
• Depth makes singular vals move slower when small, faster when large

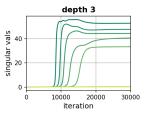
Theorem

With depth N (and small init) each singular val $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$

• Leads to larger gaps between singular vals







Theory & Experiments

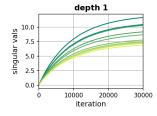
Trajectory analysis for GD over deep matrix factorizations:

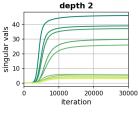
• Depth makes singular vals move slower when small, faster when large

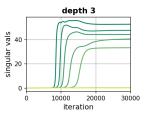
Theorem

With depth N (and small init) each singular val $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$

Leads to larger gaps between singular vals ⇒ lower rank!







Theory & Experiments

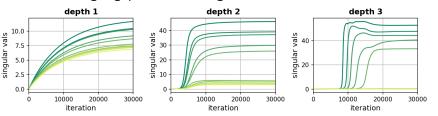
Trajectory analysis for GD over deep matrix factorizations:

• Depth makes singular vals move slower when small, faster when large

Theorem

With depth N (and small init) each singular val $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$

Leads to larger gaps between singular vals ⇒ lower rank!



See our poster: Thu 10:45AM-12:45PM, #245

Theory & Experiments

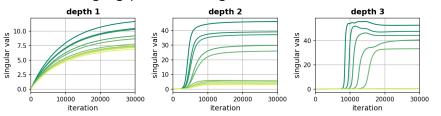
Trajectory analysis for GD over deep matrix factorizations:

• Depth makes singular vals move slower when small, faster when large

Theorem

With depth N (and small init) each singular val $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$

Leads to larger gaps between singular vals ⇒ lower rank!



See our poster: Thu 10:45AM-12:45PM, #245

THANK YOU!