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Differential Operators
• Want to compute operators such as divergence:

∇ ⋅ f =
d

∑
i=1

∂fi(x)
∂xi f : ℝd → ℝdwhere is a neural net.

• Solving PDEs

• Finding fixed points

• Fitting SDEs

• Continuous normalizing flows



Automatic Differentiation (AD)
Reverse-mode AD gives cheap vector-Jacobian products:


• For full Jacobian, need     separate passes


• In general, Jacobian diagonal has the same cost as the full Jacobian! 

• We restrict architecture to allow one-pass diagonal computations.
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HollowNets
Allow efficient computation of dimension-wise derivatives of order k:

with only k backward passes, regardless of dimension.

Example:

Jacobian Jacobian diagonalDk=1
dim f(x) =



HollowNet Architecture

• Hidden units which don’t 
depend on their respective 
input:


• Output units depend only on 
their respective hidden and 
input:

hi = ci(x−i)

fi(x) = τi([xi, hi])

HollowNets are composed of two sub-networks:



Can get exact dimension-
wise derivatives by 
disconnecting some 
dependencies in backward 
pass.

i.e. detach in PyTorch or 
stop_gradient in TensorFlow.

HollowNet Jacobians



HollowNet Jacobians
Can factor Jacobian into:


• A diagonal matrix (dimension-wise dependencies).


• A hollow matrix (all interactions).
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Application I: Finding Fixed Points
Root finding problems                     can be solved using Jacobi-Newton:( f(x) = 0)

xt+1 = xt − f(x)

• Same solution with faster 
convergence.


• We applied to implicit ODE 
solvers for solving stiff 
equations.

xt+1 = xt − [Ddim f(x)]−1 f(x)



Application II: Continuous Normalizing Flows
• Transforms distributions through an ODE:

• Change in density given by divergence:
d log p(x, t)

dt
= tr ( d

dx
f(x)) =

d

∑
i=1

[Ddim f(x)]i



Learning Stochastic Diff Eqs
• Fokker-Planck describes density change using            and            :
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∂t
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Takeaways

• Dimension-wise derivatives are 
costly for general functions.


• Restricting to hollow Jacobians 
gives cheap diagonal grads.


• Useful for PDEs, SDEs, 
normalizing flows, and 
optimization.


