

Scalable Global Optimization via Local Bayesian Optimization

David Eriksson Uber Al eriksson@uber.com

Michael Pearce

Jake Gardner

Ryan Turner

Matthias Poloczek

Global Optimization

Find $x^* \in \Omega$ such that $f(x^*) \leq f(x)$, $\forall x \in \Omega$

- *f* is a continuous, computationally expensive, black-box function
- $\Omega \subset \mathbb{R}^d$ is a hyper-rectangle

Bayesian Optimization (BO)

Common restrictions:

- A few hundred evaluations
- Less than 10 tunable parameters

Bayesian Optimization (BO)

Common restrictions:

- A few hundred evaluations
- Less than 10 tunable parameters

Bayesian Optimization (BO)

Common restrictions:

- A few hundred evaluations
- Less than 10 tunable parameters

High-dimensional BO is challenging

Challenges:

- 1. The search space grows exponentially with dimensionality
- 2. A global GP model may not fit the data everywhere
- 3. Large areas of uncertainty leads to over-exploration

Previous work makes **strong assumptions**:

- Additive structure
- Low-dimensional structure

Trust-region methods

Main idea:

- Optimize a (simple) model in a local region
- Expand/shrink this region based on progress
- Only requires a locally accurate model

Trust-region BO (TuRBO)

1. Avoids over-exploration by using a trust-region framework

- 2. Balances exploration/exploitation by using BO inside the trust-region
- 3. Uses Thompson sampling to scale to large batch sizes

Experimental results

Robot pushing: 10,000 evaluations, batch size 50 Rover trajectory planning: 20,000 evaluations, batch size 100

Experimental results

200D Ackley function: 10,000 evaluations, batch size 100

Summary

TuRBO:

- Achieves excellent results for high-dimensional problems
- Combines BO with trust-regions to avoid over-exploration
- Makes no assumptions about low-dimensional structure

Paper: <u>https://arxiv.org/abs/1910.01739</u> Code: <u>https://github.com/uber-research/TuRBO</u>

Poster #9