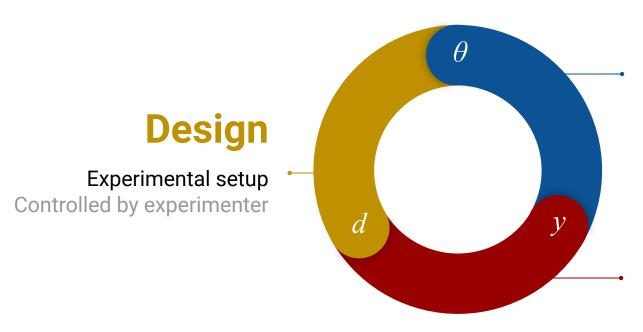
Variational Bayesian Optimal Experimental Design

Adam Foster[†] Martin Jankowiak[‡] Eli Bingham[‡] Paul Horsfall[‡] Yee Whye Teh[†] Tom Rainforth[†] Noah D. Goodman^{‡§} [†]Oxford Statistics, [‡]Uber AI, [§]Stanford

Spotlight, NeurIPS 2019

Adaptive experimentation

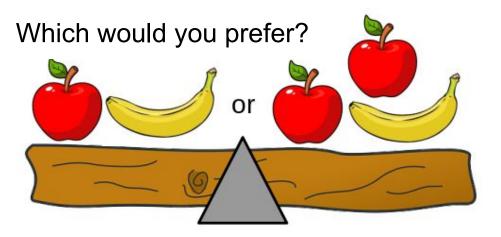


Inference

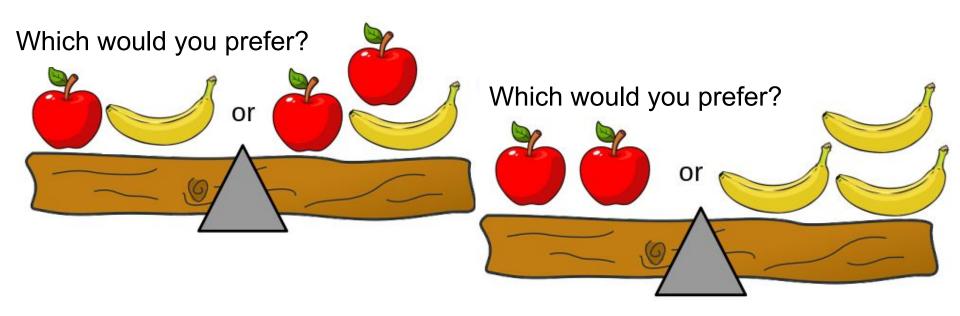
Data analyzed Model fitted

Data generated Response sampled

What makes a good experiment?

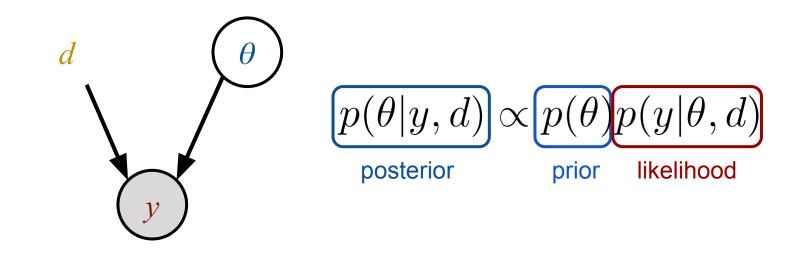


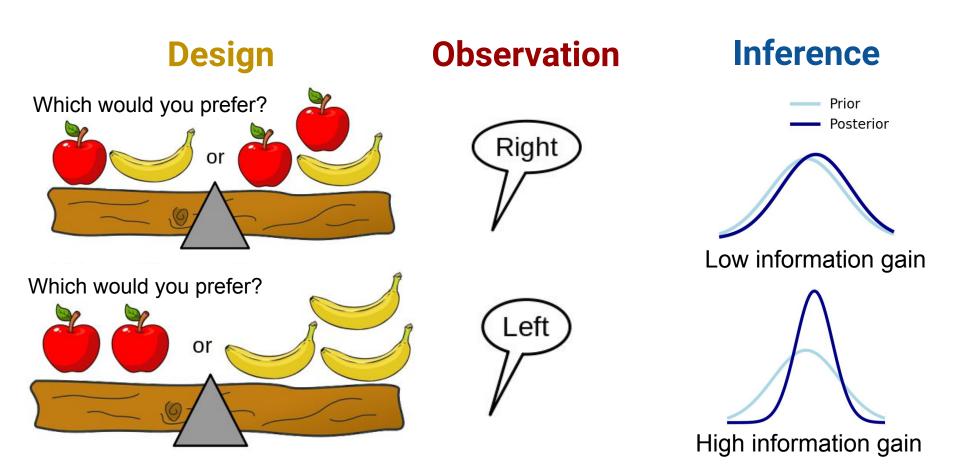
What makes a good experiment?



Bayesian experimental design

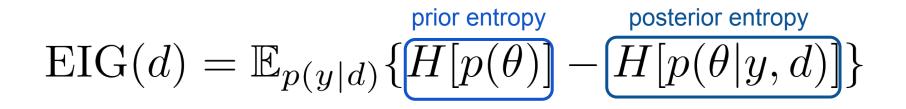
 θ : **latent variable** of interest *d* : **design** *y* : **data**

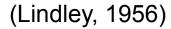




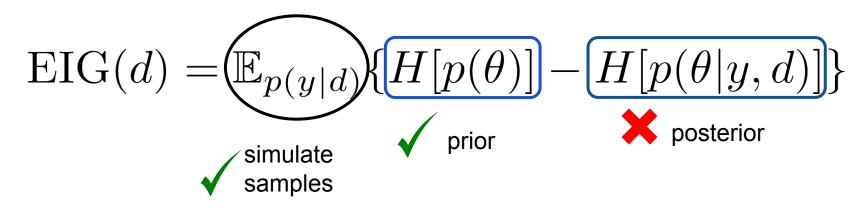
Expected information gain (EIG)

Expected reduction in entropy from the prior to the posterior





Estimating the EIG is difficult!



"Doubly intractable"

Our contribution: Variational estimators of the EIG

- Bound EIG to turn estimation into optimization
- This removes double intractability

$$\operatorname{EIG}(d) \leq \mathbb{E}_{p(y,\theta|d)} \left\{ \log \frac{p(y|\theta,d)}{q(y|d)} \right\}_{\substack{\text{approximate} \\ \text{marginal density}}}$$

Variational estimator Implicit? Consistent? $\mathsf{EIG}(d) \le \mathbb{E}_{p(\theta)p(y|\theta,d)} \left| \log \frac{p(y|\theta,d)}{q_m(y|d,\phi)} \right|$ Х Marginal $\mathsf{EIG}(d) \ge \mathbb{E}_{p(\theta)p(y|\theta,d)} \left| \log \frac{q_p(\theta|y,d,\phi)}{p(\theta)} \right|$ Х Posterior $\mathsf{EIG}(d) \le \mathbb{E}_{p(\theta_0)p(y|\theta_0,d)q_v(\theta_{1:M}|y,\phi)} \left| \log \frac{p(y|\theta_0,d)}{\frac{1}{M} \sum_{m=1}^{M} \frac{p(\theta_m)p(y|\theta_m,d)}{q_n(\theta_0,d)}} \right|$ Variational NMC Marginal + $\mathsf{EIG}(d) \approx \mathbb{E}_{p(\theta)p(y|\theta,d)} \left| \log \frac{q_{\ell}(y|\theta,d,\psi)}{q_{m}(y|d,\phi)} \right|$ × likelihood

Much faster convergence rates!

Variational rate

$$\mathcal{O}(T^{-1/2})$$

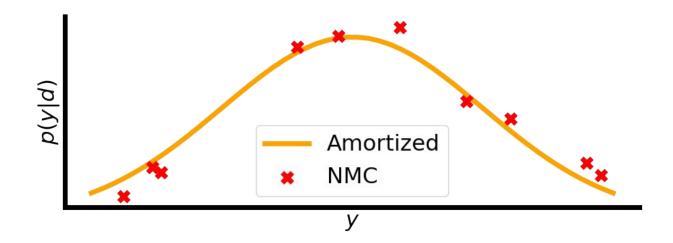
Nested Monte Carlo rate

$$\mathcal{O}(T^{-1/3})$$

$$T =$$
computational cost

Intuition: amortization

• Approximate the **functional form** rather than computing independent **point estimates**



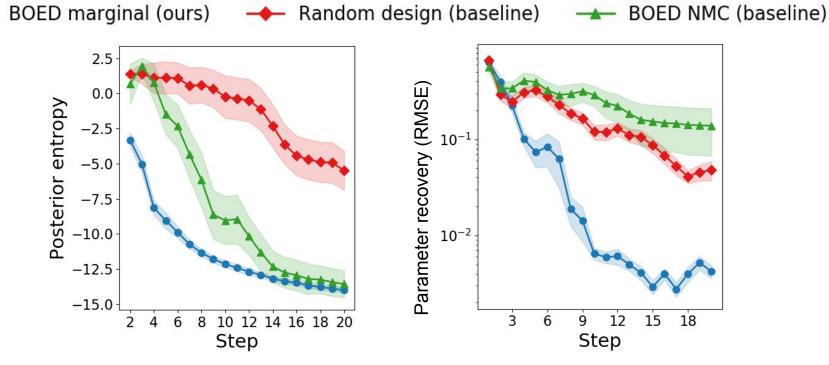
NMC = Nested Monte Carlo

Experiments: EIG estimation accuracy

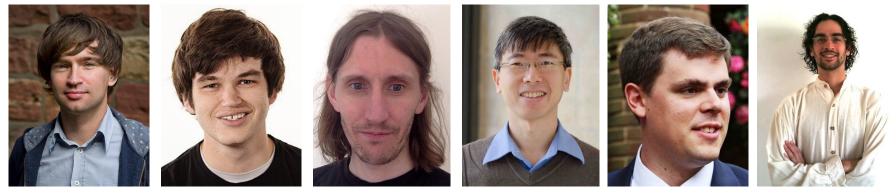
	-	Preference		Mixed effects		Extrapolation	
		$Bias^2$	Var	Bias ²	Var	Bias ²	Var
OUIS	Posterior	4.26×10^{-2}	8.53×10^{-3}	2.21×10^{-3}	2.70×10^{-3}	1.24×10^{-4}	4.11×10^{-5}
	Marginal	1.10×10^{-3}	$1.99{ imes}10^{-3}$	n/a	n/a	n/a	n/a
	VNMC	4.17×10^{-3}	9.04×10^{-3}	n/a	n/a	n/a	n/a
	Marginal + likelihood	n/a	n/a	3.05×10^{-3}	$7.72{ imes}10^{-5}$	$6.90{ imes}10^{-6}$	$1.84{ imes}10^{-5}$
כ	NMC	7.60×10^{-2}	8.36×10^{-2}	n/a	n/a	n/a	n/a
Dabdill	Laplace	8.42×10^{-2}	9.70×10^{-2}	n/a	n/a	n/a	n/a
	LFIRE	1.30×10^{-1}	1.41×10^{-2}	9.66×10^{-2}	7.69×10^{-2}	n/a	n/a
נ	DV	9.23×10^{-2}	8.07×10^{-3}	7.19×10^{-3}	6.76×10^{-4}	7.84×10^{-6}	4.11×10^{-5}

Experiments: End-to-end adaptive experimentation

Which would you prefer?



Thank you



Uber Al

Implementation in Pyro

docs.pyro.ai/en/stable/contrib.oed.html

Full paper

papers.nips.cc/paper/9553-variational-bayesian-optimal-experimental-design.pdf