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Scale Gibbs Sampling by Subsampling

Gibbs sampling is one of the most popular Markov chain Monte Carlo (MCMC) methods

+ Converge asymptotically to the desired distribution

+ Work very well in practice

– Prohibitive cost on large-scale datasets or models

Subsampling methods to scale MCMC

+ Reduce computational cost significantly

– No guarantees on the accuracy and the efficiency

We show how to scale Gibbs sampling by subsampling with guarantees on the

accuracy, convergence rate, and computational efficiency

1



Scale Gibbs Sampling by Subsampling

Gibbs sampling is one of the most popular Markov chain Monte Carlo (MCMC) methods

+ Converge asymptotically to the desired distribution

+ Work very well in practice

– Prohibitive cost on large-scale datasets or models

Subsampling methods to scale MCMC

+ Reduce computational cost significantly

– No guarantees on the accuracy and the efficiency

We show how to scale Gibbs sampling by subsampling with guarantees on the

accuracy, convergence rate, and computational efficiency

1



Scale Gibbs Sampling by Subsampling

Gibbs sampling is one of the most popular Markov chain Monte Carlo (MCMC) methods

+ Converge asymptotically to the desired distribution

+ Work very well in practice

– Prohibitive cost on large-scale datasets or models

Subsampling methods to scale MCMC

+ Reduce computational cost significantly

– No guarantees on the accuracy and the efficiency

We show how to scale Gibbs sampling by subsampling with guarantees on the

accuracy, convergence rate, and computational efficiency

1



Inference on Graphical Models

Consider factor graphs

π(x1:n) =
1

Z
·
∏
φ∈Φ

exp (φ(x1:n))

Sample from π by Gibbs sampling

Loop

Select a variable xi to sample at random

Compute the conditional distribution of xi based on all factors φ that depend on xi
Resample variable xi from the conditional distribution

End Loop

Very expensive when the factor set is large!

Can we subsample factors to compute conditional distributions?
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Previous Work

Scale MCMC with subsampling methods: [Welling and Teh, 2011], [Maclaurin and Adams,

2014], [Bardenet et.al., 2017] ...

Christopher De Sa, Vincent Chen and Wing Wong. Minibatch Gibbs Sampling on Large

Graphical Models. ICML 2018

Main idea:

• Use conditional distributions based on subsampled factors as proposal distributions

• Add the Metropolis-Hastings (M-H) step to correct the bias

Limitations:

• The Metropolis-Hastings step is expensive

• Only support sampling from discrete distributions
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Poisson-Minibatching

Introduce an auxiliary Poisson variable for each factor to control whether a factor is used or not

sφ|x1:n ∼ Poisson

(
λMφ

L
+ φ(x1:n)

)

The joint distribution

π(x1:n, sφ∈Φ) ∝ exp

∑
φ∈Φ

(
sφ log

(
1 +

L

λMφ
φ(x1:n)

)
+ sφ log

(
λMφ

L

)
− log (sφ!)

)
A factor φ contributes to the energy only when sφ > 0, thus the algorithm computes

conditional distributions with only a subset of factors

• Expected number of factors being used � the factor set size

• Stationary distribution of x1:n does not change even without the M-H step

• Sampling a set of Poisson variables is cheap
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Algorithm of Poisson-Minibatching Gibbs Sampling (Poisson-Gibbs)

Loop

Select a variable xi to sample at random

Resample sφ from its conditional distribution given x1:n

Compute the conditional distribution based on the chosen factors φ such that sφ > 0

Resample variable xi from the conditional distribution

End Loop

• Simple to implement

• No Metropolis-Hastings step
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Theoretical Guarantees on Convergence Rate

The convergence rate of our method can be slowed down by at most a constant compared

to that of Gibbs sampling

• Provide recipe of setting the hyperparameter minibatch size to make this constant O(1)
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Sample from Continuous Distributions

Difficulty: non-trivial to sample from continuous conditional distributions

Our Solution: Double Chebyshev Approximation method

• Get polynomial approximation of the PDF by using Chebyshev approximation twice

• Generate a sample by inverse transform sampling

Theoretical Guarantees on the accuracy and the efficiency

• Stationary distribution of x1:n does not change

• The convergence rate of our method can be slowed down by at most a constant

compared to that of Gibbs sampling
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Summary

• Scaling MCMC methods while maintaining theoretical guarantees is hard

• We propose Poisson-minibatching Gibbs sampling which solves this problem using the

auxiliary variable method

• We provide theoretical guarantees on the accuracy, convergence rate and computational

efficiency

• For more details—including experiments—come see our poster!

Thank you!

Poster #158, 5:30 – 7:30 today
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