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The Problem and Our Work
Given smooth potential f : R? — R, sample from given density
p(x) o< exp(—f(x)).

® We study both strongly convex and non-convex potentials.

® Many papers study individual algorithms [1, 2, 3, 4, 5].
However, there has yet to be a unifying theoretical framework.

® We provide a theorem that gives the convergence rate of
sampling algorithms obtained by discretizing an exponentially
contracting diffusion based on local properties of the
numerical method.

® A direct extension is we obtain faster converging algorithms
with the class of stochastic Runge-Kutta (SRK) methods.



Exponential W,-Contraction of Diffusions

Diffusion X; has exponential W5-contraction if two instances
Xt x, Xt,y initiated respectively from x and y satisfy

Wa (Xt x, Xe.y) < €%Fx —yl2, forallx,y € R ¢t >0.
Informal: The marginals of the continuous-time diffusion become
the same very quickly regardless of the initial state.

Example: When f is strongly convex, the Langevin diffusion
characterized by the SDE

dX; = —VF(X) dt + V2 dB;

has exponential W5-contraction.



Local Deviation

Let {)?k}keN be a discretization of {X;}+>0, and {Xs(k)}szo be
another instance of the diffusion starting from X,_; at s = 0.

The local deviation at iteration k is defined as D,(Tk) = X,Sk) — X
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Uniform Orders of Local Deviation

Recall local deviation D,Sk) = X,Ek) - )N(k. A numerical scheme has
uniform mean-square and mean orders of (p1, p2) if for all k € N

el =B [E[ID{ 1317, )] < M, (1)
&2 =k [|[E[D{) 7, ]|I3] < 2ah?, 2)
for constants A\; and A\, independent of h.

Remark: Bounds like (1) appeared explicitly in previous works (see
e.g. [1]). To the best of our knowledge, (2) did not appear
explicitly in previous works.



A General Theorem

Theorem (Informal)

Diffusion has a stationary distribution p(x) o< exp(—f(x)) and
exhibits exponential W,-contraction. Acting on this diffusion, a
numerical discretization with uniform mean-square and mean
orders of (p1, p2) for pp > p1 + 1 has rate O(e Y/ (P=1/2)) in W

Remark 1: Connects the numerical SDE and sampling literatures:
Take any classical SDE discretization method, instantly know the
convergence rate when it's used for sampling!

Remark 2: Can also be used for discretizing the underdamped
Langenvin diffusion! Check out our examples in the paper.



Convergence Rates for EM and SRK

Result ‘ Diffusion ‘ Smoothness‘ Unif. Orders ‘ Rate

EM (Durmus et al.) Langevin 1st (1.0,1.5) @(d672)

EM (Ex. 1) Langevin | 1st & 2nd | (1.5,2.0) | O(de™)
SRK-LD (This work) | Langevin | 1st3rd | (2.0,2.5) | O(de 2?/3)

EM (Ex. 2) General Ist (1.0,1.5) | O(de?)
SRK-ID (This work) | General 1st (1.5,2.0) | O(d®/*m?e 1)

Table: Convergence rates in W, i.e. number of iterations required to reach
€ accuracy to the target in W5. Top three for strongly convex f; bottom
two for non-convex f that admits uniformly dissipative diffusion.

EM = Euler-Maruyama
SRK = Stochastic Runge-Kutta
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