Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin

Ilias DiakonikolasDaniel M. KanePasin ManurangsiUW MadisonUC San DiegoGoogle

Nearly Tight Bound for Robust Proper Learning of Halfspaces with a Margin

Diakonikolas, Kane, Manurangsi

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

$$= \min_{\mathbf{w}} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \ [< \mathbf{w}, \mathbf{x} > \cdot \mathbf{y} < \mathbf{0}]$$

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

$$= \min_{\mathbf{w}} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \ [< \mathbf{w}, \mathbf{x} > \cdot \mathbf{y} < \mathbf{0}]$$

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

$$= \min_{\mathbf{w}} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \ [< \mathbf{w}, \mathbf{x} > \cdot \mathbf{y} < \mathbf{0}]$$

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

An algorithm is a α -learner if it outputs w with classification error at most α • OPT + ϵ

$$= \min_{\mathbf{w}} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \ [< \mathbf{w}, \mathbf{x} > \cdot \mathbf{y} < \mathbf{0}]$$

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

An algorithm is a α -learner if it outputs w with classification error at most α • OPT + ϵ

$$= \min_{\mathbf{w}} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \ [< \mathbf{w}, \mathbf{x} > \cdot \mathbf{y} < \mathbf{0}]$$

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

An algorithm is a α -learner if it outputs w with classification error at most α • OPT + ϵ

$$= \min_{\mathbf{w}} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \ [< \mathbf{w}, \mathbf{x} > \cdot \mathbf{y} < \mathbf{0}]$$

Input

- Labeled samples (x_1, y_1) , (x_2, y_2) , ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

An algorithm is a α -learner if it outputs w with classification error at most α • OPT + ϵ

Bad news:

[Arora et al.'97] Unless NP = RP, no poly-time α -learner for all constants α .

[Guruswami-Raghavendra' 06, Feldman et al.'06] Even weak learning is NP-hard.

OPT = Min classification error among all halfspaces

$$= \min_{w} \Pr_{(x, y) \sim \mathcal{D}} \ [< w, x > \cdot y < 0]$$

Nearly Tight Bound for Robust Proper Learning of Halfspaces with a Margin

Diakonikolas, Kane, Manurangsi

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

An algorithm is a α -learner if it outputs w with classification error at most $\alpha \cdot OPT_{\gamma} + \varepsilon$

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

An algorithm is a α -learner if it outputs w with classification error at most $\alpha \cdot OPT_{\gamma} + \epsilon$

Margin Assumption

 "Robustness" of the optimal halfspace to l₂ noise

Input

- Labeled samples (x₁, y₁), (x₂, y₂), ... $\in \mathcal{B}(d) \times \{\pm 1\}$ from distribution \mathcal{D}
- Positive real number $\boldsymbol{\epsilon}$

Output

A halfspace w with "small" classification error

An algorithm is a α -learner if it outputs w with classification error at most $\alpha \cdot OPT_{\gamma} + \varepsilon$

Margin Assumption

- "Robustness" of the optimal halfspace to ℓ_2 noise
- Variants used in Perceptron, SVMs

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) time, takes poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) samples

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) time, takes poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) samples

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \frac{\exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))}{\tan \epsilon}$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ ϵ) • $exp(\tilde{O}(1/\gamma))$ time, takes poly(d/ ϵ) • $exp(\tilde{O}(1/\gamma))$ samples

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) • exp($\tilde{O}(\log(1/\epsilon)/\gamma^2)$) time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) time takes poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) samples

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) • exp($\tilde{O}(\log(1/\epsilon)/\gamma^2)$) time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) time takes poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) samples

Output hypothesis is not a halfspace

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ε)•exp(Õ(1/γ)) time takes poly(d/ε)•exp(Õ(1/γ)) samples

Output hypothesis is not a halfspace

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] • improper 1-learner that runs in poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) time takes poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) samples

Output hypothesis is not a halfspace

<u>**Theorem 1**</u> proper 1.01-learner that runs in poly(d/ ϵ) • exp(Õ(1/ γ^2))-time takes O(1/ $\epsilon^2\gamma^2$) samples

Previous Works

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] • improper 1-learner that runs in poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) time takes poly(d/ ϵ) • exp($\tilde{O}(1/\gamma)$) samples

Output hypothesis is not a halfspace

Our Results

Approximation ratio: any α > 1

<u>Theorem 1</u> proper 1.01-learner that runs in poly(d/ ϵ) • exp(Õ(1/ γ^2))-time takes O(1/ $\epsilon^2\gamma^2$) samples

Previous Works

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ε) • exp(Õ(1/γ)) time takes poly(d/ε) • exp(Õ(1/γ)) samples

Output hypothesis is not a halfspace

Our Results

Approximation ratio: any α > 1

<u>Theorem 1</u> proper 1.01-learner that runs in poly(d/ ϵ) • exp(Õ(1/ γ^2))-time takes O(1/ $\epsilon^2\gamma^2$) samples

Previous Works

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \frac{\exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))}{\exp(O(1/\epsilon^2\gamma^2))}$ time, takes O(1/ $\epsilon^2\gamma^2$) samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ε)·exp(Õ(1/γ)) time takes poly(d/ε)·exp(Õ(1/γ)) samples

Output hypothesis is not a halfspace

Our Results

Approximation ratio: any α > 1

<u>Theorem 1</u> proper 1.01-learner that runs in poly(d/ ϵ)· $exp(\tilde{O}(1/\gamma^2))$ -time takes O(1/ $\epsilon^2\gamma^2$) samples

Previous Works

Approximation ratio: α = 1

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \frac{\exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))}{\exp(O(1/\epsilon^2\gamma^2))}$ time, takes O(1/ $\epsilon^2\gamma^2$) samples

Approximation ratio: α = 1

[Shalev-Shwartz, Shamir & Sridharan'09] → improper 1-learner that runs in poly(d/ε) • exp(Õ(1/γ)) time takes poly(d/ε) • exp(Õ(1/γ)) samples

Output hypothesis is not a halfspace

Our Results

Approximation ratio: any α > 1

<u>Theorem 1</u> proper 1.01-learner that runs in poly(d/ ϵ) • $exp(\tilde{O}(1/\gamma^2))$ -time takes O(1/ $\epsilon^2\gamma^2$) samples

<u>**Theorem 2</u>** Assuming Exponential Time Hypothesis, for any constant $\alpha > 1$, no proper α -learner runs in poly(d/ ϵ)·exp(O(1/ $\gamma^{2-o(1)}$)) time</u>

Previous Works

Approximation ratio: $\alpha = 1$

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: $\alpha = 1$

[Shalev-Shwartz, Shamir & Sridharan'09] → improper 1-learner that runs in poly(d/ε) • exp(Õ(1/γ)) time takes poly(d/ε) • exp(Õ(1/γ)) samples

Output hypothesis is not a halfspace

Our Results

Approximation ratio: any $\alpha > 1$

<u>Theorem 1</u> proper 1.01-learner that runs in poly(d/ ϵ) • exp(Õ(1/ γ^2))-time takes O(1/ $\epsilon^2\gamma^2$) samples

<u>**Theorem 2</u>** Assuming Exponential Time Hypothesis, for any constant $\alpha > 1$, no proper α -learner runs in poly(d/ ϵ) • exp(O(1/ $\gamma^{2-o(1)}$)) time</u>

Previous Works

Approximation ratio: $\alpha = 1$

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: $\alpha = 1$

[Shalev-Shwartz, Shamir & Sridharan'09] → improper 1-learner that runs in poly(d/ε) • exp(Õ(1/γ)) time takes poly(d/ε) • exp(Õ(1/γ)) samples

Output hypothesis is not a halfspace

Our Results

Approximation ratio: any $\alpha > 1$

<u>Theorem 1</u> proper 1.01-learner that runs in poly(d/ ϵ) • exp(Õ(1/ γ^2))-time takes O(1/ $\epsilon^2\gamma^2$) samples

<u>**Theorem 2</u>** Assuming Exponential Time Hypothesis, for any constant $\alpha > 1$, no proper α -learner runs in poly(d/ ϵ) • exp(O(1/ $\gamma^{2-o(1)}$)) time</u>

Approximation ratio: $\alpha = 1$

<u>Theorem 3</u> Assuming W[1] \neq FPT, for any function f, no proper 1-learner runs in poly(d/ ϵ) f(1/ γ) time

Previous Works

Approximation ratio: $\alpha = 1$

[Ben-David & Simon'00]

proper 1-learner that runs in poly(d) $\cdot \exp(\tilde{O}(\log(1/\epsilon)/\gamma^2))$ time, takes $O(1/\epsilon^2\gamma^2)$ samples

Approximation ratio: $\alpha = 1$

[Shalev-Shwartz, Shamir & Sridharan'09] improper 1-learner that runs in poly(d/ε) • exp(Õ(1/γ)) time takes poly(d/ε) • exp(Õ(1/γ)) samples

Output hypothesis is not a halfspace

Our Results

Approximation ratio: any $\alpha > 1$

<u>Theorem 1</u> proper 1.01-learner that runs in poly(d/ ϵ) • exp(Õ(1/ γ^2))-time takes O(1/ $\epsilon^2\gamma^2$) samples

Theorem 2 Assuming Exponential Time Hypothesis, for any constant $\alpha > 1$, no proper α -learner runs in poly(d/ ϵ) • exp(O(1/ $\gamma^{2-o(1)}$)) time

Approximation ratio: $\alpha = 1$

<u>Theorem 3</u> Assuming W[1] \neq FPT, for any function f, no proper 1-learner runs in poly(d/ ϵ) · f(1/ γ) time

Also results for large approximation ratio α