
Profile Maximum Likelihood:
An Optimal, Universal, Plug-and-Play

Functional Estimator

Yi Hao and Alon Orlitsky, UCSD

0 / 19



Outline

Property estimation

Plug-in estimators

Prior results

Profile maximum likelihood

Results

Simple, unified, optimal, plug-in, estimators for four learning tasks

Proof elements: The fun theorem of maximum likelihood

Local heroes

1 / 19



Discrete Distributions

Discrete support set X

{heads, tails} = {h, t} {. . . ,−1,0,1, . . .} = Z

Distribution p over X , probability px for x ∈ X

px ≥ 0 ∑x∈X px = 1

p = (ph, pt) ph = .6, pt = .4

P collection of distributions

PX all distributions over X

P{h, t} = {(ph, pt)} = {(.6, .4), (.4, .6), (.5, .5), (0,1), . . .}
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Distribution Functional

f ∶ PX → R

Maps distribution to real value

Shannon entropy H(p) ∑x px log 1
px

Rényi entropy Hα(p)
1

1−α log (∑x p
α
x)

Support size S(p) ∑x 1px>0
Support coverage Sm(p) ∑x(1 − (1 − px)

m)

Expected # distinct symbols in m samples
Distance to uniformity Luni(p) ∑x ∣px −

1
∣X ∣ ∣

Highest probability max(p) max{px ∶ x ∈ X}

...

Many applications
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Property Estimation

Given: support set X , property f

Unknown: p ∈ PX

Estimate: f(p)

Entropy of English words

Given: X = {English words}, unknown: p, estimate: H(p)

# species in habitat

Given: X = {bird species}, unknown: p, estimate: S(p)

How to estimate f(p) when p is unknown?
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Learn from Examples

Observe n independent samples Xn =X1, . . . ,Xn ∼ p

Reveal information about p

Estimate f(p)

Estimator: f est ∶ X n → R

Estimate for f(p): f est(Xn)

Simplest estimators?
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Plug-in Estimators

Simple two-step estimators

Use Xn to derive estimate pest(Xn) of p

Plug-in f(pest(Xn)) to estimate f(p)

Hope: As n→∞, pest(Xn)→ p, then f(pest(Xn))→ f(p)

Simplest pest?
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Empirical Estimator

n samples

Nx # times x appears

pemp
x ∶= Nx

n

X = {a, b, c} p = (pa, pb, pc) = (.5, .3, .2)

Estimate p from n = 10 samples

X10 = c, a, b, a, b, a, b, a, b, c

pemp
a = 4

10
, pemp

b = 4
10
, pemp

c = 2
10

pemp = (.4, .4, .2)
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Empirical Plug-In Estimator

f emp(Xn) = f(pemp(Xn))

Entropy estimation

X10 = c, a, b, a, b, a, b, a, b, c

pemp = (.4, .4, .2)

Hemp(X10) ∶=H(.4, .4, .2)

Advantages

Plug-and-play: simple two steps

Universal: applies to all properties

Intuitive

Best-known, most-used distribution estimator

Performance?
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Sample Complexity

Min-max Probably Approximately Correct (PAC) Formulation

Allowed additive approximation error ε > 0

Allowed error probability δ > 0

nf(f
est, p, ε, δ): # samples f est needs to approximate f well,

∣f est(Xn) − f(p)∣ ≤ ε with probability ≥ 1 − δ

nf(f
est,P, ε, δ) ∶= maxp∈P nf(f est, p, ε, δ): # samples f est needs

to approximate every p ∈ P

nf(P, ε, δ) ∶= minfest nf(f
est,P, ε, δ) # samples the best estimator

needs to approximate all distributions in P
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Empirical and Optimal Sample Complexity

∣X ∣ = k, PX ∣ all distributions

Property nf(f
emp, ε,1/3) nf(ε,1/3)

Entropy k ⋅ 1ε
k

log k ⋅
1
ε

Supp. coverage m m
logm ⋅ log 1

ε

Dist. to uniform k ⋅ 1
ε2

k
log k ⋅

1
ε2

Support size k ⋅ log 1
ε

k
log k ⋅ log2 1

ε

P03, VV11a/b, WY14/19, JVHW14/18, AOST14, OSW16,
ADOS17, PW 19,. . .

For support size, P≥1/k ∶= {p ∣ px ≥ 1/k,∀x ∈ X}

Regime where ε ≳ n−0.1

Support size and coverage normalized by k and m respectively

Why is empirical plugin good? suboptimal? optimal plug-in?
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Maximum Likelihood

i.i.d. p ∈ PX , probability of observing xn ∈ X n

p(xn) ∶= PrXn∼p(Xn = xn) =∏ni=1 p(xi)

Maximum likelihood estimator: xn → dist. p maximizing p(xn)

pml(xn) = arg maxp p(x
n)

pml(h, t, h) = arg maxph+pt=1 p
2
h ⋅ pt

ph = 2/3, pt = 1/3

Identical to empirical estimator – always

Empirical good: Distribution that best explains observation

Work wells for small alphabets large sample

Overfits data when alphabet is large relative to sample size

Improve?
11 / 19



What Counts

iid: Do not care about order

Entropy, Rényi, support size, coverage: symmetric functionals

Do not care about labels

(h,h,t), (t,t,h), (h,t,h), (t,h,t), (t,h,h), (h,t,t) same entropy

Care only: # of elements appearing any given number of times

Three samples: 1 element appeared once, 1 element appeared twice

Profile: ϕ = {1,2}
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Profile maximum likelihood (PML)

Profile ϕ(xn) of xn is the multiset of symbol frequencies

b ananas Ô⇒ a appears thrice, n twice, b s once
Ô⇒ ϕ(bananas) = {3,2,1,1}

Probability of observing a profile ϕ when sampling from p is

p(ϕ) ∶= ∑
yn∶ϕ(yn)=ϕ

p(yn) = ∑
yn∶ϕ(yn)=ϕ

n

∏
i=1
p(yi)

Profile maximum likelihood maps xn to

pml
ϕ(xn) ∶= argmax

p∈PX
p(ϕ(xn))
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Simple Profile ML

Observe x3 = h, t, h

Sequence ML: ph = 2/3, pt = 1/3

Profile: ϕ = {1,2}

Profile ML: maximize probability of ϕ = {1,2}

p, q p + q = 1

Pr(ϕ = {1,2}) = ppq + qqp + pqp + qpq + qpp + pqq = 3(p2q + q2p)

max(p2q + q2p) = max(qp ⋅ (p + q)) = maxpq

Profile ML: p = q = 1
2

More logical

More interesting?
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RESULTS
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Summary

Profile maximum likelihood (PML) is a
unified, time- and sample-optimal approach
to four basic learning problems

Additive property estimation

Rényi entropy estimation

Sorted distribution estimation

Uniformity testing

Yi Hao and Alon Orlitsky
The Broad Optimality of Profile Maximum Likelihood
Arxiv, NeurIPS 2019
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Additive Functional Estimation

Additive functional: f(p) = ∑x f(px)

Entropy, support size, coverage, distance to uniformity

For all symmetric, additive, Lipschitz∗, functionals, for
n ≥ nf(∣X ∣, ε,1/3) and ε ≥ n−0.1,

Pr (∣f(pml
ϕ(X4n)) − f(p)∣ > 5ε) ≤ exp(−

√
n)

With four times the optimal # samples for error probability 1/3,
PML plug-in achieves much lower error probability

Covers four functionals above

Can use near-linear-time PML approximation [CSS19]
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Additional results

Rényi Entropy

For integer α > 1, PML plug-in has optimal k1−1/α sample complexity

For non-integer α > 3/4, (A)PML plug-in improves best-known results

Sorted Distribution Estimation

Under `1 distance, (A)PML yields optimal Θ(k/(ε2 log k)) sample
complexity for sorted distribution estimation

Actual distribution in `1 distance, 2(k − 1)/(πε2) [KOPS ’15]

Uniformity testing: p = pu v.s. ∣p− pu∣ ≥ ε; complexity Θ(
√
k/ε2)

Tester below is sample-optimal up to logarithmic factors of k

Input: parameters k, ε, and a sample Xn
∼ p with profile ϕ

If any symbol appears ≥ 3 max{1, n/k} log k times, return 1

If ∣∣pml
ϕ − pu∣∣2 ≥ 3ε/(4

√
k), return 1; else, return 0
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Thank you!
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