Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent

Qing Qu

Center for Data Science

New York University

Joint with Xiao Li (CUHK) and Zhihui Zhu (JHU)

December 12, 2019

Multichannel Sparse Blind Deconvolution

Given multiple measurement

$$y_i = a \circledast x_i, (1 \le i \le p),$$

can we recover both *a* and $\{x_i\}_{i=1}^p$ simultaneously?

- We assume y_i , a, $x_i \in \mathbb{R}^n$.
- ♦ Invertible kernel a.
- ♦ Sparse signal x_i

 $x_i \sim_{i.i.d.} \text{Bernoulli} - \text{Gaussian}(\theta)$

Motivating Applications

3

Symmetry Leads to Nonconvex Problems

♦ Scaling Symmetry: $y_i = a \otimes x_i = \alpha a \otimes \alpha^{-1} x_i$

- easy to handle, ||a|| = 1;

Symmetry Leads to Nonconvex Problems

♦ Scaling Symmetry: $y_i = a \otimes x_i = \alpha a \otimes \alpha^{-1} x_i$

- easy to handle, ||a|| = 1;

• Shift Symmetry: $y_i = a \otimes x_i = s_\ell [a] \otimes s_{-\ell} [x_i]$

Symmetry Leads to Nonconvex Problems

- ♦ Scaling Symmetry: $y_i = a \circledast x_i = \alpha a \circledast \alpha^{-1} x_i$ - easy to handle, ||a|| = 1;
- ♦ Shift Symmetry creates equivalent solutions:

$$\left(\boldsymbol{a}, \left\{\boldsymbol{x}_{i}\right\}_{i=1}^{p}\right) = \left(\operatorname{s}_{\ell}\left[\boldsymbol{a}\right], \left\{\operatorname{s}_{-\ell}\left[\boldsymbol{x}_{i}\right]\right\}_{i=1}^{p}\right)$$

Nonconvex Formulation

Finding a shift of the filter *a* by solving

$$\min_{\boldsymbol{q}} \ \frac{1}{np} \sum_{i=1}^{p} H_{\mu} \left(\boldsymbol{C}_{\boldsymbol{y}_{i}} \boldsymbol{P} \boldsymbol{q} \right), \quad \text{s.t.} \quad \boldsymbol{q} \ \in \ \mathbb{S}^{n-1}.$$

Huber loss: 1st-order smooth & sparsity promoting

$$H_{\mu}(z) := \begin{cases} |z| & |z| \ge \mu \\ \frac{z^2}{2\mu} + \frac{\mu}{2} & |z| < \mu \end{cases}$$

Finding a shift of the filter *a* by solving

$$\min_{\boldsymbol{q}} \ \frac{1}{np} \sum_{i=1}^{p} \boldsymbol{H}_{\boldsymbol{\mu}} \left(\boldsymbol{C}_{\boldsymbol{y}_{i}} \boldsymbol{P} \boldsymbol{q} \right), \quad \text{s.t.} \quad \boldsymbol{q} \ \in \ \mathbb{S}^{n-1}.$$

Preconditioning leads to better landscape

$$\boldsymbol{P} = \left(\frac{1}{\theta n p} \sum_{i=1}^{p} \boldsymbol{C}_{\boldsymbol{y}_{i}}^{\top} \boldsymbol{C}_{\boldsymbol{y}_{i}}\right)^{-1/2} \approx \left(\boldsymbol{C}_{\boldsymbol{a}}^{\top} \boldsymbol{C}_{\boldsymbol{a}}\right)^{-1/2},$$

Landscape with/without Preconditioning

Main Result

With random init., gradient descent solves sparse blind deconvolution in a linear rate.

Main Result

With random init., gradient descent solves sparse blind deconvolution in a linear rate.

Study the geometry properties of optimization landscape.

- regularity condition, implicit regularization, sharpness.

Main Result

With random init., gradient descent solves sparse blind deconvolution in a linear rate.

- Study the geometry properties of optimization landscape.
 - regularity condition, implicit regularization, sharpness.
- Benign geometry enables efficient optimization.

Comparison with Literature

Significant improvements in sample and time complexity.

Methods	Wang et al. ¹	Li et al. ²	Ours
Assumptions	a spiky & invertible,	a invertible,	a invertible,
	$oldsymbol{x}_i\sim_{i.i.d.}\mathcal{BG}(heta)$	$oldsymbol{x}_i\sim_{i.i.d.}\mathcal{BR}(heta)$	$oldsymbol{x}_i\sim_{i.i.d.}\mathcal{BG}(heta)$
Formulation	$\min_{\left\ \boldsymbol{q}\right\ _{\infty}=1}\left\ \boldsymbol{C}_{\boldsymbol{q}}\boldsymbol{Y}\right\ _{1}$	$\max_{q\in\mathbb{S}^{n-1}}\left\ m{C}_{q}m{P}m{Y} ight\ _{4}^{4}$	$\min_{\boldsymbol{q}\in\mathbb{S}^{n-1}}H_{\mu}\left(\boldsymbol{C}_{\boldsymbol{q}}\boldsymbol{P}\boldsymbol{Y}\right)$
Algorithm	interior point	<i>noisy</i> RGD	<i>vanilla</i> RGD
Recovery Condition	$\theta \in \mathcal{O}(1/\sqrt{n}),$	$\theta \in \mathcal{O}(1),$	$\theta \in \mathcal{O}(1),$
	$p \ge \widetilde{\Omega}(n)$	$p \geq \widetilde{\Omega}(\max\left\{n, \kappa^8\right\} \frac{n^8}{\varepsilon^8})$	$p \ge \widetilde{\Omega}(\max\left\{n, \frac{\kappa^8}{\mu^2}\right\}n^4)$
Time Complexity	$\widetilde{\mathcal{O}}(p^4n^5\log(1/\varepsilon))$	$\widetilde{\mathcal{O}}(pn^{13}/arepsilon^8)$	$\widetilde{\mathcal{O}}(pn^5 + pn\log{(1/\varepsilon)})$

2. Wang et al., blind deconvolution from multiple sparse inputs, 2016.

3. Li et al., Multichannel sparse blind deconvolution on the sphere, 2018.

Experiment I: Convergence Comparison

Experiment II: Super-resolution Microscopy

Ground truth

Huber-loss

 $\ell^4\text{-}\mathsf{loss}$

Take home message

With random init., gradient descent solves sparse blind deconvolution in a linear rate.

Poster: Hall B + C #207

Acknowledgement

Xiao Li (CUHK, EE)

Zhihui Zhu (JHU, MINDS)

THANK YOU!

