Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness

NeurIPS 2019

Saeed Mahloujifar*

Xiao Zhang* Mohammad Mahmoody

David Evans

Impossibility Results for Robust Learning

fiers robust, the task seems quite challenging. In this work,

Concentration of measure gives lower bound on adversarial risk for 'nice' spaces:

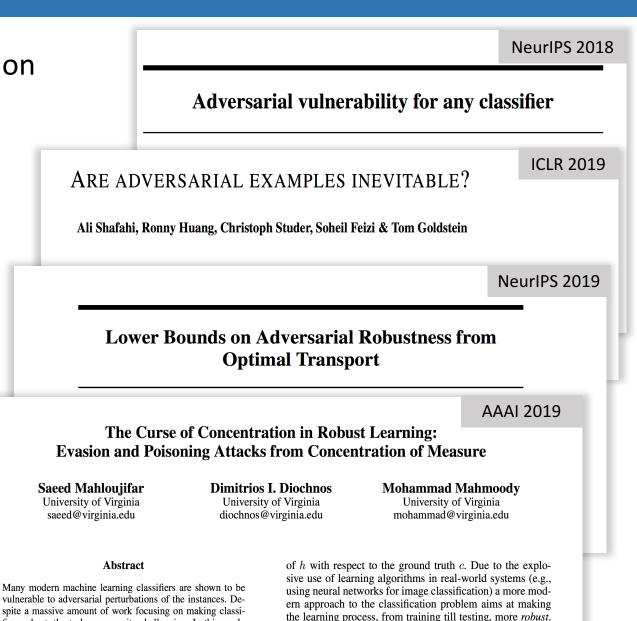
Specific distributions:

[Gilmer+ 2018], [Fawzi+, 2018], [Diochnos+, 2018],

[Shafahi+, 2019], [Bhagoji+, 2019], [Dohmatob+, 2019]

Concentrated metric probability space:

[Mahloujifar+, 2019]



Namely, even if the instance x is perturbed in a limited way

What about image distributions?

Concentration of measure gives lower bound on adversarial risk for 'nice' spaces:

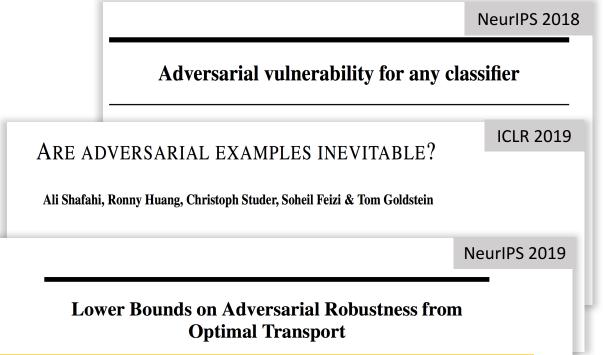
Specific distributions:

[Gilmer+ 2018], [Fawzi+, 2018], [Diochnos+, 2018],

[Shafahi+, 2019], [Bhagoji+, 2019], [Dohmatob+, 2019]

Concentrated metric probability space:

[Mahloujifar+, 2019]



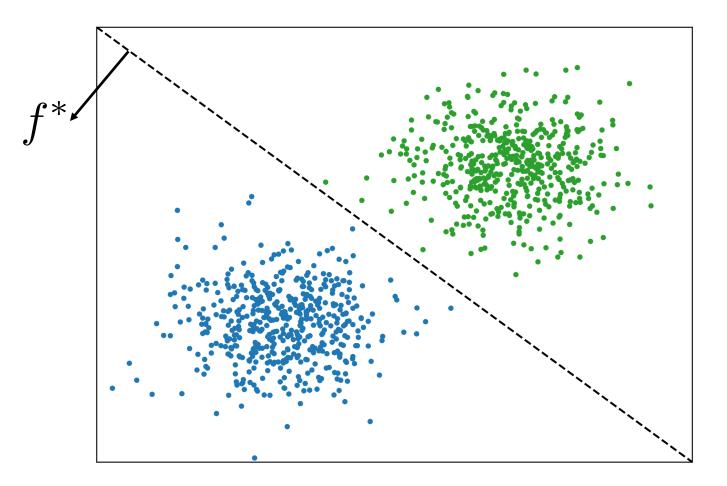
Do these results hold for real distributions like images?

- 1. Provide a way to measure concentration using i.i.d. samples
- 2. Show these impossibility results do not simply apply to image benchmarks

Abstract

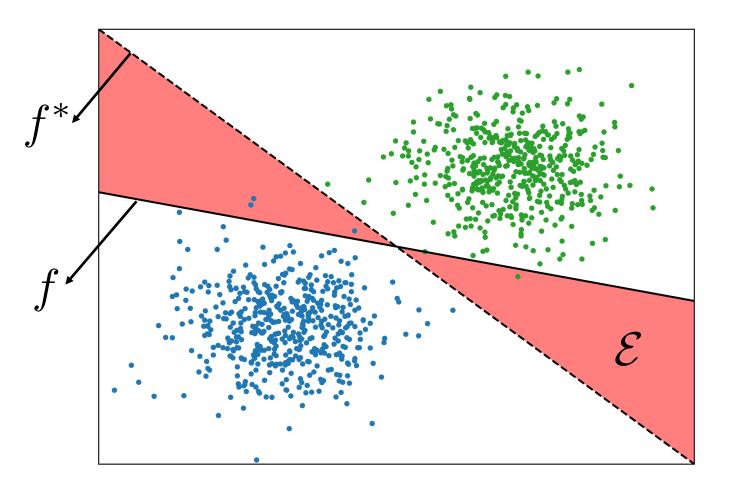
Many modern machine learning classifiers are shown to be vulnerable to adversarial perturbations of the instances. Despite a massive amount of work focusing on making classifiers robust, the task seems quite challenging. In this work, of h with respect to the ground truth c. Due to the explosive use of learning algorithms in real-world systems (e.g., using neural networks for image classification) a more modern approach to the classification problem aims at making the learning process, from training till testing, more *robust*. Namely, even if the instance x is perturbed in a limited way

Connecting Concentration and Robust Learning



- μ : underlying data distribution
- f^* : ground-truth classifier

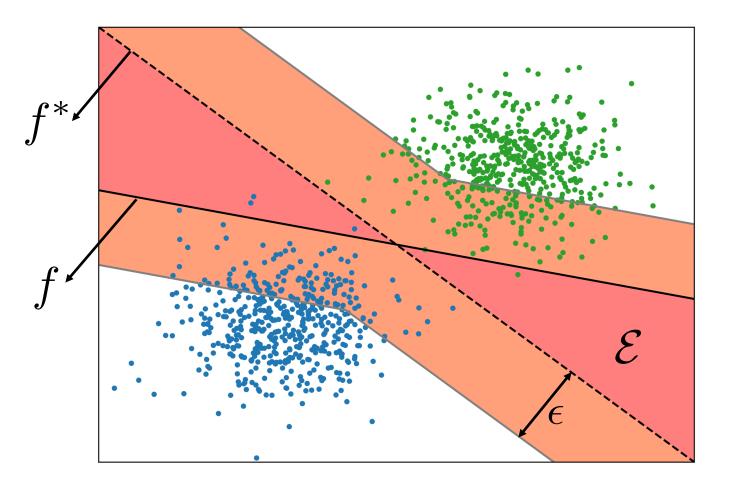
Risk and Error Region



- μ : underlying data distribution
- f^* : ground-truth classifier
- f : any classifier
- ${\mathcal E}_{-}$: error region between f and f^{\ast}

$$\operatorname{Risk}(f, f^*) = \Pr_{\boldsymbol{x} \sim \mu} \left[f(\boldsymbol{x}) \neq f^*(\boldsymbol{x}) \right] = \mu(\boldsymbol{\mathcal{E}})$$

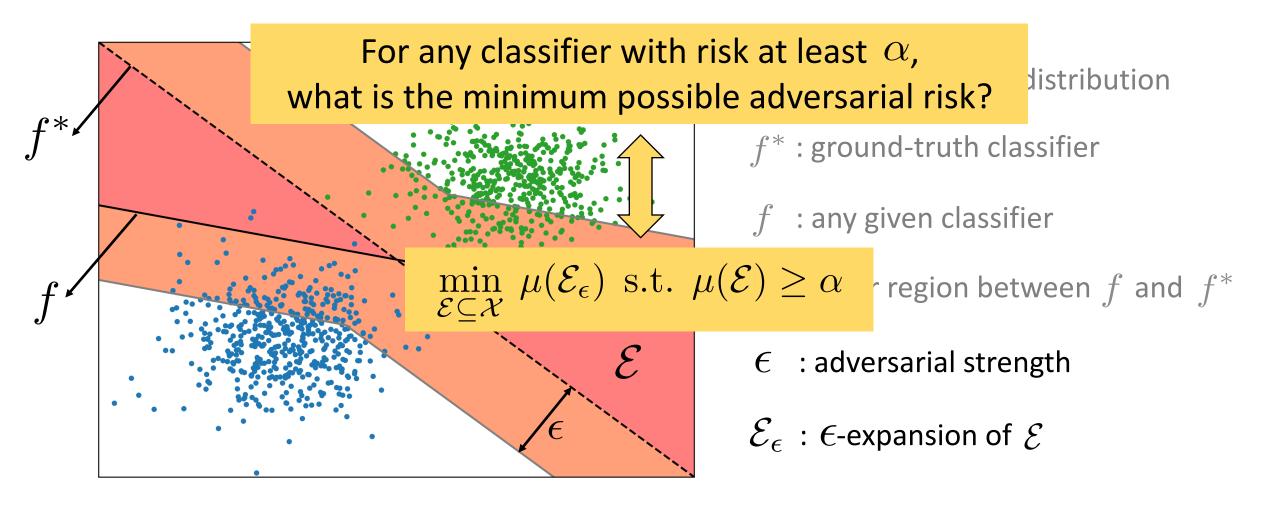
Adversarial Risk and Expanded Error Region



- μ : underlying data distribution
- f^* : ground-truth classifier
- f : any classifier
- ${\mathcal E}_{-}$: error region between f and f^{\ast}
- ϵ : adversarial strength
- $\mathcal{E}_\epsilon:\epsilon$ -expansion of \mathcal{E}

 $\operatorname{AdvRisk}_{\epsilon}(f, f^*) = \Pr_{\boldsymbol{x} \sim \mu} \left[\exists \, \boldsymbol{x}' \in \operatorname{Ball}(\boldsymbol{x}, \epsilon) \, \text{s.t.} \, f(\boldsymbol{x}') \neq f^*(\boldsymbol{x}') \right] = \mu(\mathcal{E}_{\epsilon})$

Concentration of Measure



 $\operatorname{AdvRisk}_{\epsilon}(f, f^*) = \Pr_{\boldsymbol{x} \sim \mu} \left[\exists \, \boldsymbol{x}' \in \operatorname{Ball}(\boldsymbol{x}, \epsilon) \, \text{s.t.} \, f(\boldsymbol{x}') \neq f^*(\boldsymbol{x}') \right] = \mu(\mathcal{E}_{\epsilon})$

Empirical Concentration Problem

Actual concentration problem: $\min_{\mathcal{E} \subset \mathcal{X}} \mu(\mathcal{E}_{\epsilon}) \text{ s.t. } \mu(\mathcal{E}) \geq \alpha$

only have access to data samples

Empirical concentration problem: $\min_{\mathcal{E}\in\mathcal{G}} \,\widehat{\mu}(\mathcal{E}_{\epsilon}) \text{ s.t. } \,\widehat{\mu}(\mathcal{E}) \geq \alpha$ $\widehat{\mu}$: empirical measure based on samples

 \mathcal{G} : some special collection of subsets (w.r.t. perturbation metric)

Main Theoretical Result

Actual concentration problem:

 $\min_{\mathcal{E}\subseteq\mathcal{X}} \mu(\mathcal{E}_{\epsilon}) \text{ s.t. } \mu(\mathcal{E}) \geq \alpha$

only have access to data samples asymptotic convergence

Empirical concentration problem: $\min_{\mathcal{E}\in\mathcal{G}} \widehat{\mu}(\mathcal{E}_{\epsilon}) \text{ s.t. } \widehat{\mu}(\mathcal{E}) \geq \alpha$ **Key idea:** increase both the sample size and the complexity of \mathcal{G} in a careful way

 $\widehat{\mu}$: empirical measure based on samples

 \mathcal{G} : some special collection of subsets (w.r.t. perturbation metric)

Empirically Measuring Concentration

To solve:
$$\min_{\mathcal{E} \in \mathcal{G}} \widehat{\mu}(\mathcal{E}_{\epsilon})$$
 s.t. $\widehat{\mu}(\mathcal{E}) \ge \alpha$ (ℓ_{∞} metric)
 \mathcal{G} : complement of union of rectangles

Algorithmic idea: avoid the dense regions

Empirically Measuring Concentration

To solve:
$$\min_{\mathcal{E} \in \mathcal{G}} \widehat{\mu}(\mathcal{E}_{\epsilon}) \text{ s.t. } \widehat{\mu}(\mathcal{E}) \ge \alpha \quad (\ell_{\infty} \text{ metric})$$

 $\mathcal{G} : \text{complement of union of rectangles}$

Algorithmic idea: avoid the dense regions

- Select dense data points using k-nearest neighbor
- Place rectangles to capture the dense area using k-means

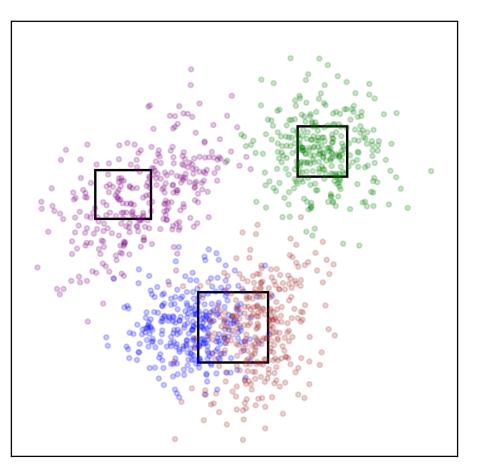


Illustration of our algorithm (lpha=0.01 , $\epsilon=1.0$)

Empirically Measuring Concentration

To solve:
$$\min_{\mathcal{E} \in \mathcal{G}} \widehat{\mu}(\mathcal{E}_{\epsilon})$$
 s.t. $\widehat{\mu}(\mathcal{E}) \ge \alpha$ (ℓ_{∞} metric)
 \mathcal{G} : complement of union of rectangles

Algorithmic idea: avoid the dense regions

- Select dense data points using k-nearest neighbor
- Place rectangles to capture the dense area using k-means
- Expand the rectangles and treat the complement of their union as the error region
- Tune parameters (e.g. the number of rectangles) for the best results

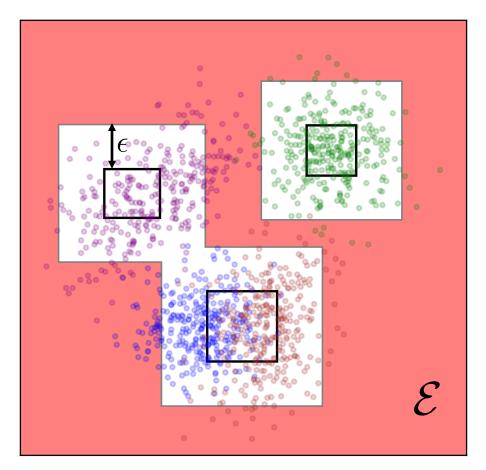


Illustration of our algorithm (lpha=0.01 , $\epsilon=1.0$) $\mu(\mathcal{E})=0.01
ightarrow \mu(\mathcal{E}_{\epsilon})=0.24$

Empirical Results on Benchmark Datasets

Datasets	Risk Constraint ($lpha$)	Max Perturbation	Lower Bound on Adversarial Risk
MNIST	0.01	$\ell_{\infty} \le 0.3$	7.2%
MNIST	0.01	$\ell_2 \le 1.5$	2.1%
CIFAR-10	0.05	$\ell_{\infty} \le 8/255$	18.1%

For benchmark image datasets, there exists rather robust error regions

Compare with State-of-the-art Defenses

Datasets	Risk Constraint ($lpha$)	Max Perturbation	Lower Bound on Adversarial Risk	Attack Success Rate for State-of-the-art Defenses
MNIST	0.01	$\ell_{\infty} \le 0.3$	a small ga 7.2%	10.7% [Madry+, 2018]
MNIST	0.01	$\ell_2 \le 1.5$	2.1%	20.0% [Schott+, 2019]
CIFAR-10	0.05	$\ell_{\infty} \le 8/255$	a large ga 18.1%	p 52.9% [Madry+, 2019]

For benchmark image datasets, there exists rather robust error regions

Suggest concentration is *not* the sole reason behind adversarial vulnerability

Conclusion: concentration of measure cannot explain all: either exist more robust classifiers or some other reasons explaining why

Poster: 10:45 AM -- 12:45 PM @ East Exhibition Hall B + C #10

Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness

310	Ry Latte
	2 mm
	11/2

Saeed Mahloujifar

Xiao Zhang

Mohammad Mahmoody

David Evans

URL: https://evademl.org/concentration/