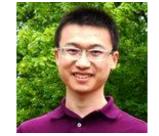


Asymmetric Valleys: Beyond Sharp and Flat Local Minima

Haowei He¹



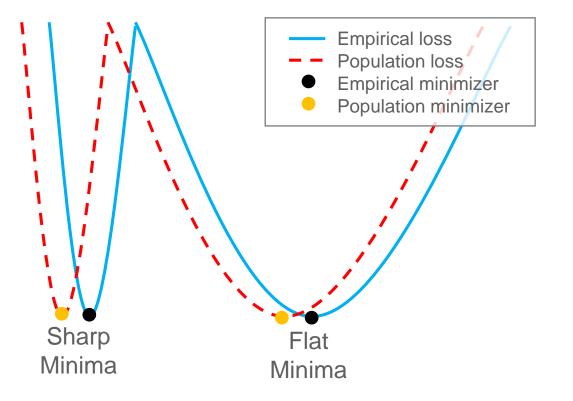
Gao Huang²

Yang Yuan¹

¹Institute for Interdisciplinary Information Sciences, ²Department of Automation Tsinghua University

Popular belief:

• Flat minima generalize better!*



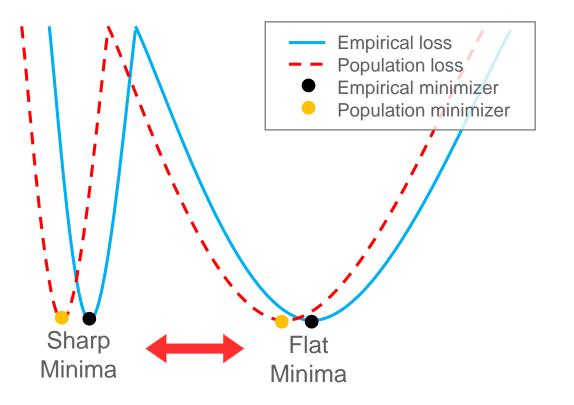
* On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2018.

Popular belief:

• Flat minima generalize better!

Counter-examples:

• Flat and sharp minimum can convert to each other.*



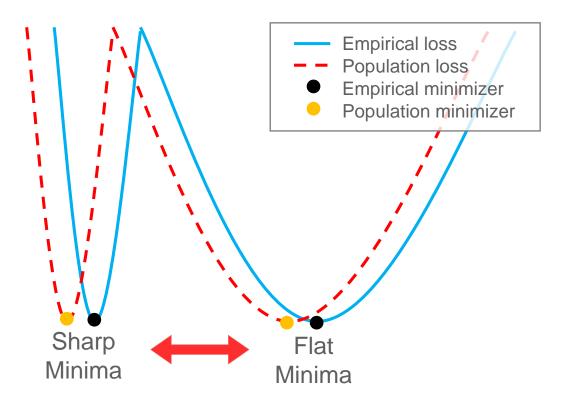
* Sharp minima can generalize for deep nets. ICML, 2017.

Popular belief:

• Flat minima generalize better!

Counter-examples:

- Flat and sharp minimum can convert to each other.*
- Minima of modern deep networks are connected**



* Sharp minima can generalize for deep nets. ICML, 2017.

** Essentially no barriers in neural network energy landscape. ICML, 2018. 2

Categorizing minima by flatness/sharpness might be an oversimplification!

Categorizing minima by flatness/sharpness might be an oversimplification!

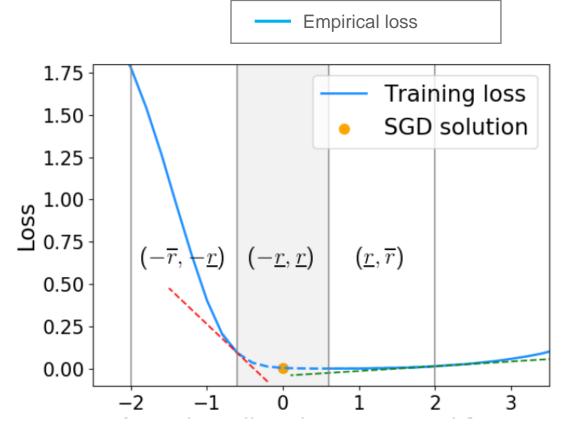
In a minimum, the landscape might be sharp along some directions, but flat along other directions.

Our Proposal: Asymmetric Valley

Asymmetric Valley: Loss grows fast on one side and slowly on the other side.

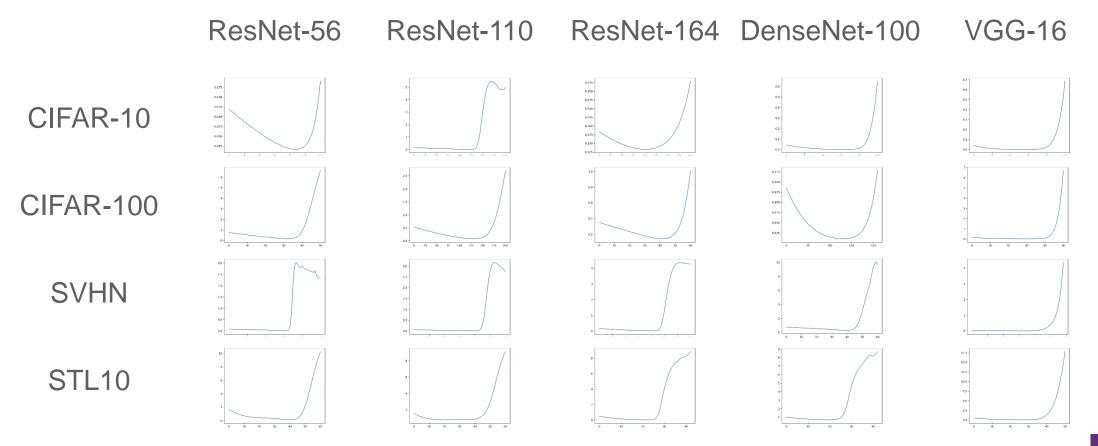
Definition:

• A direction u is $(\overline{r}, \underline{r}, p, c)$ -asymmetric with respect to w if $\nabla_l \hat{L}(w + lu) < p$, $\nabla_l \hat{L}(w - lu) > cp$ and $l \in (\overline{r}, \underline{r})$

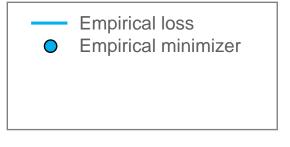


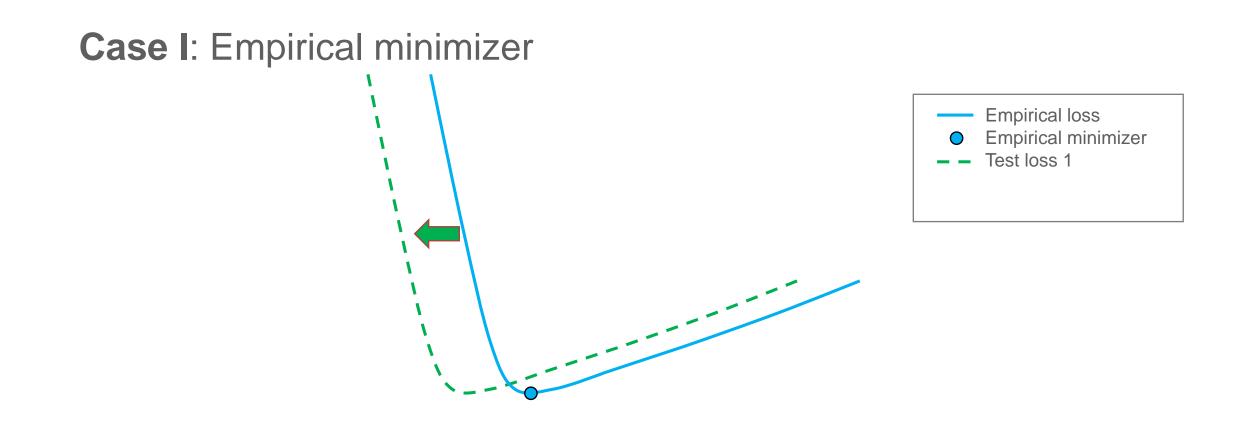
Our Proposal: Asymmetric Valley

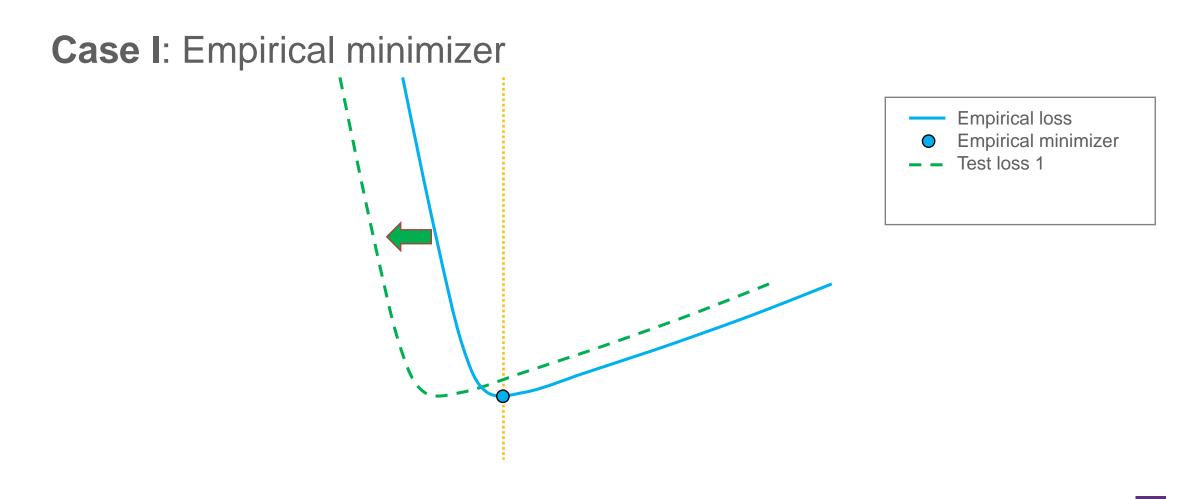
Wide existence of asymmetric direction



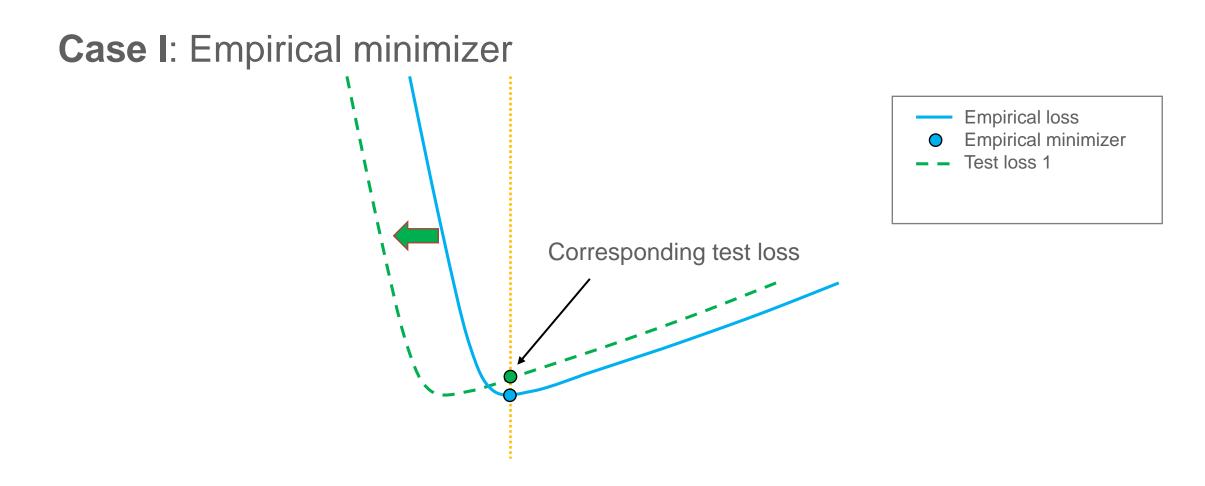
Case I: Empirical minimizer



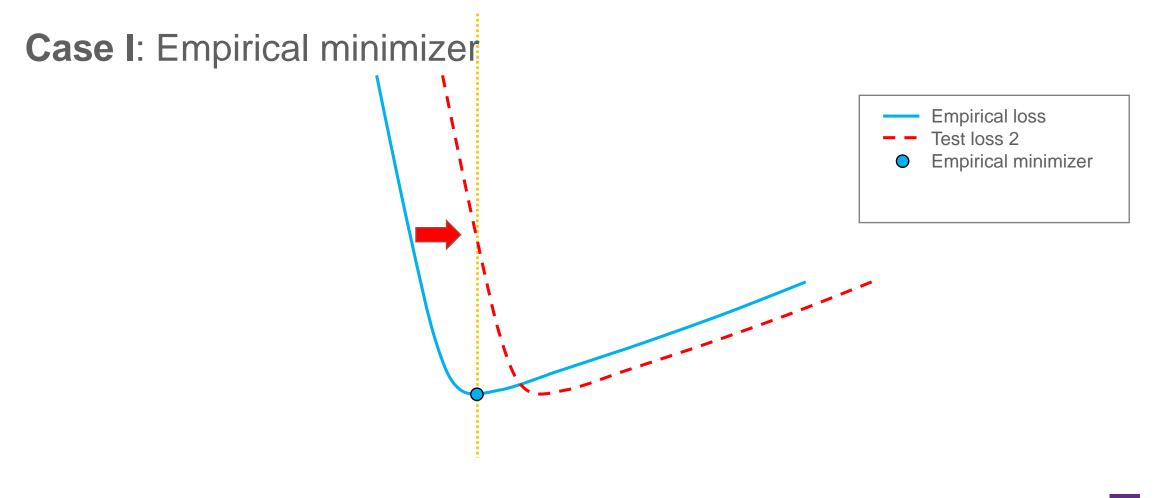


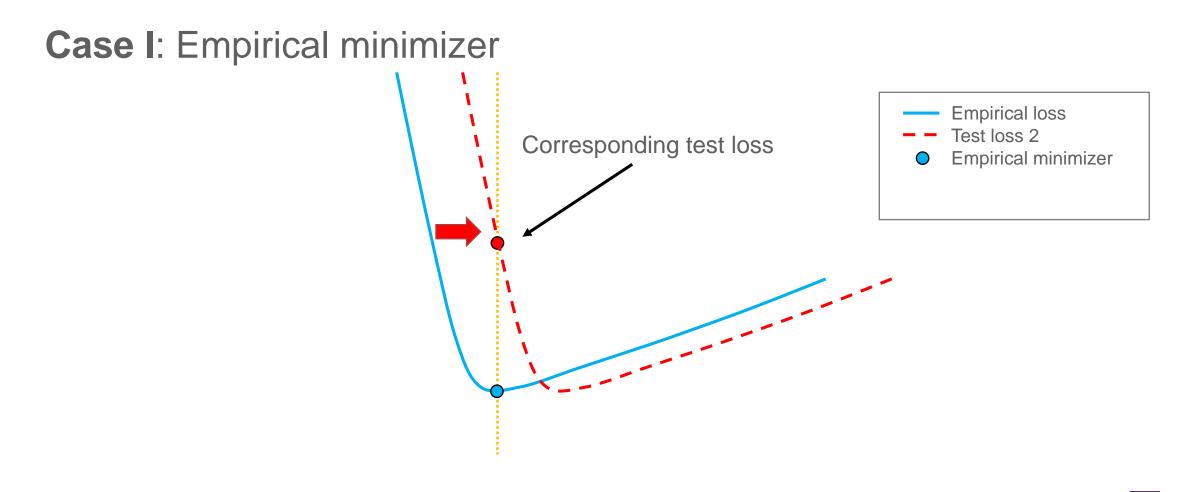


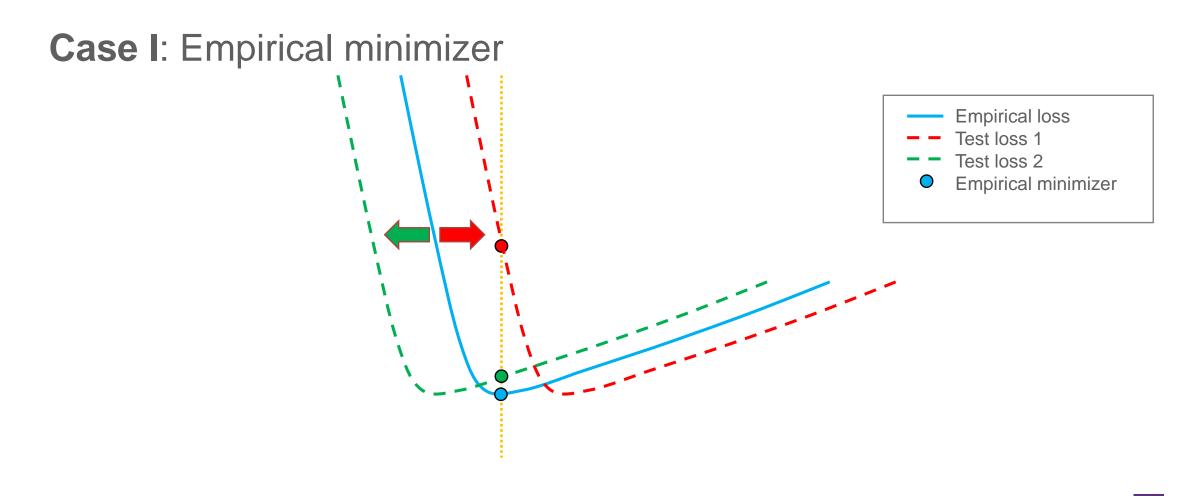
Our Proposal: Asymmetric Valley

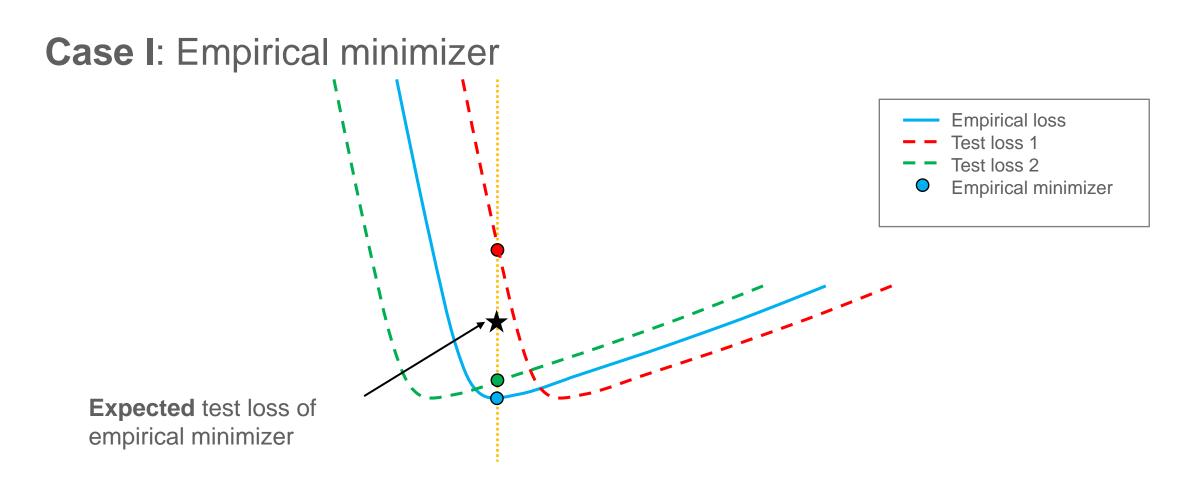


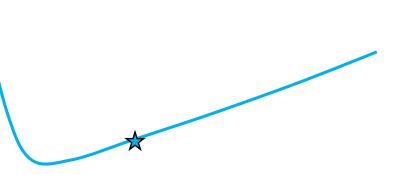
Case I: Empirical minimizer **Empirical loss** Test loss 2 Empirical minimizer

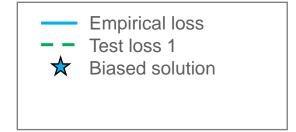


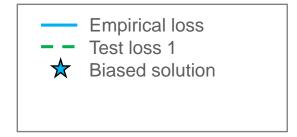


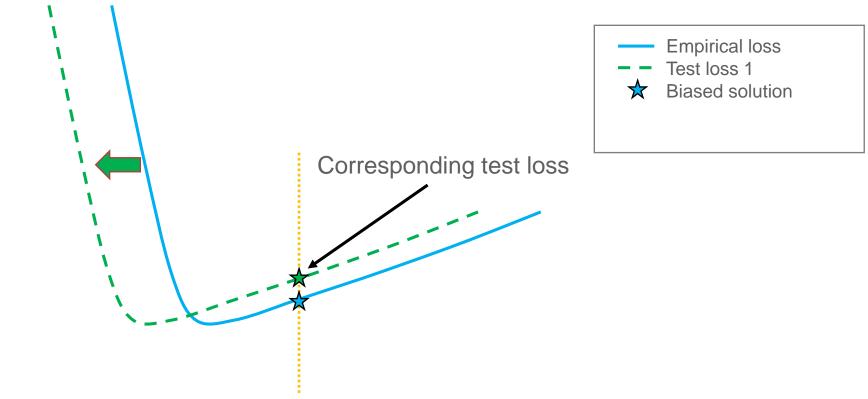


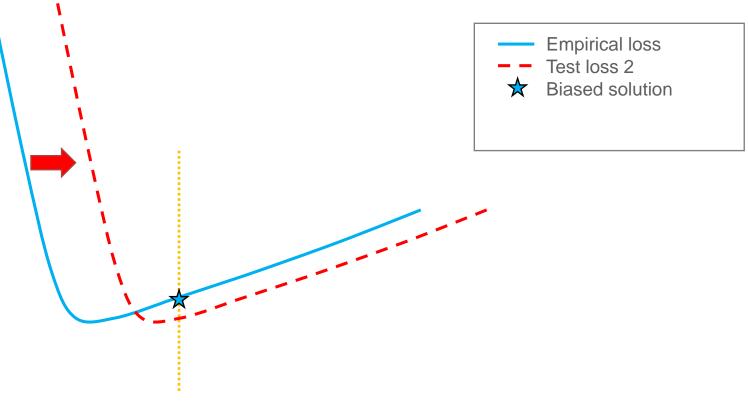


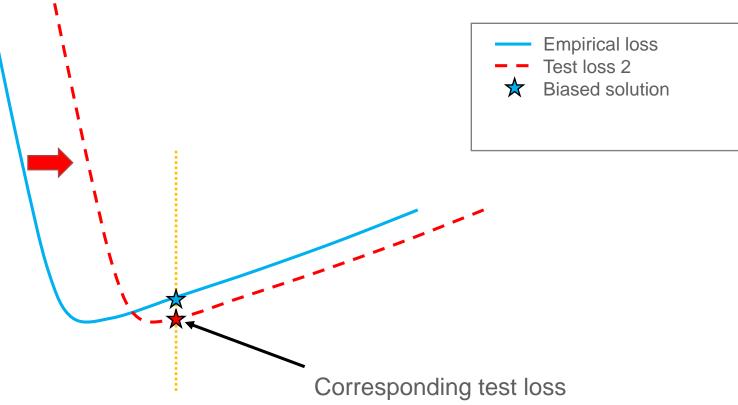


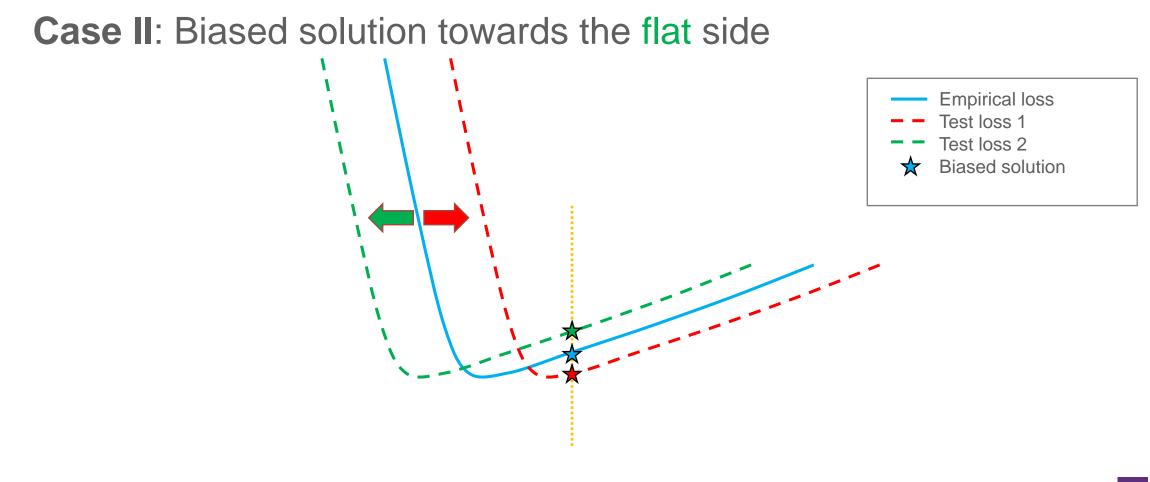








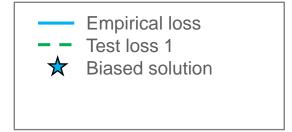






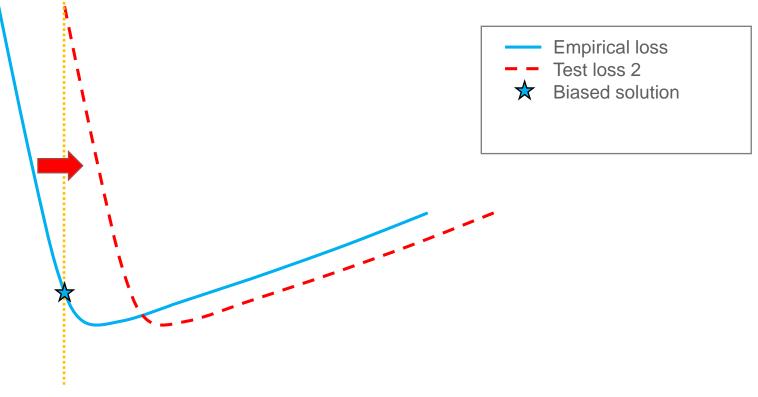


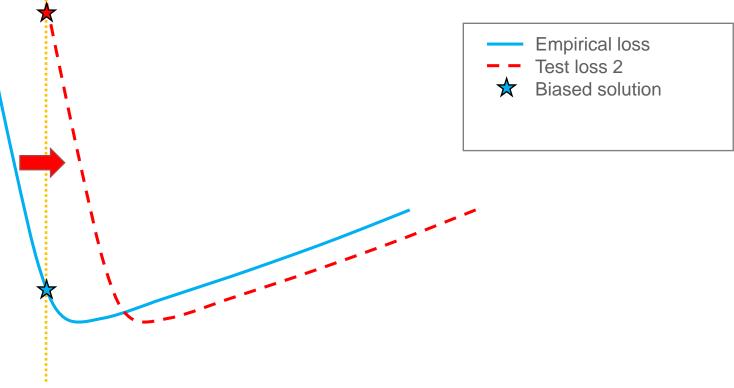


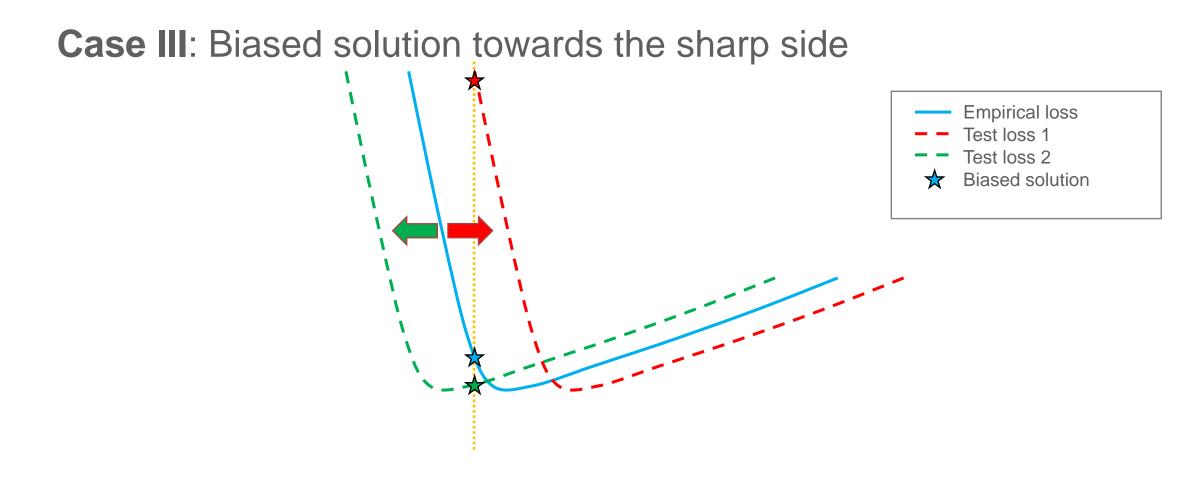


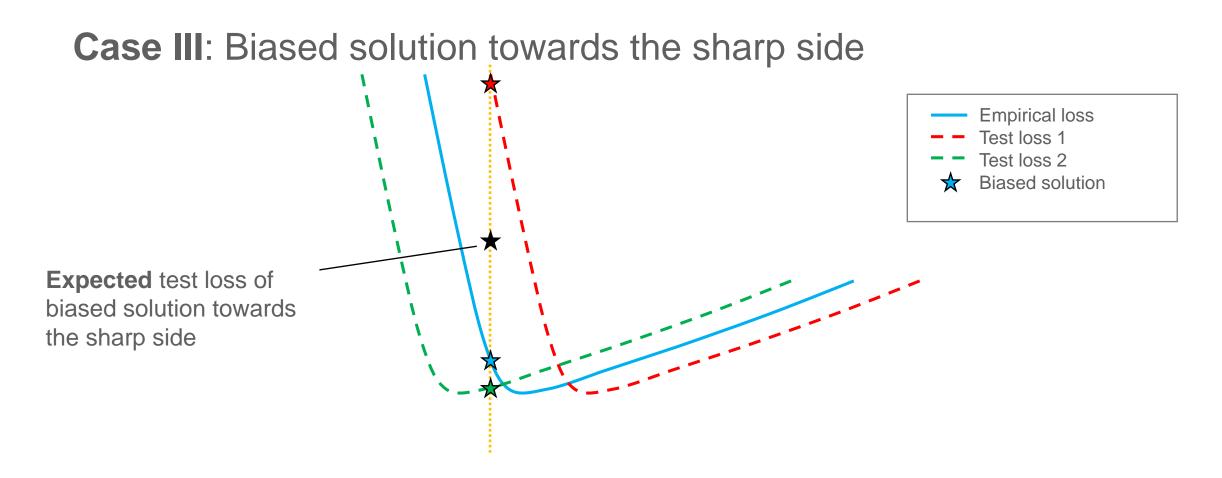
Case III: Biased solution towards the sharp side Empirical loss Test loss 1 **Biased solution**

Case III: Biased solution towards the sharp side Empirical loss Test loss 1 **Biased solution**

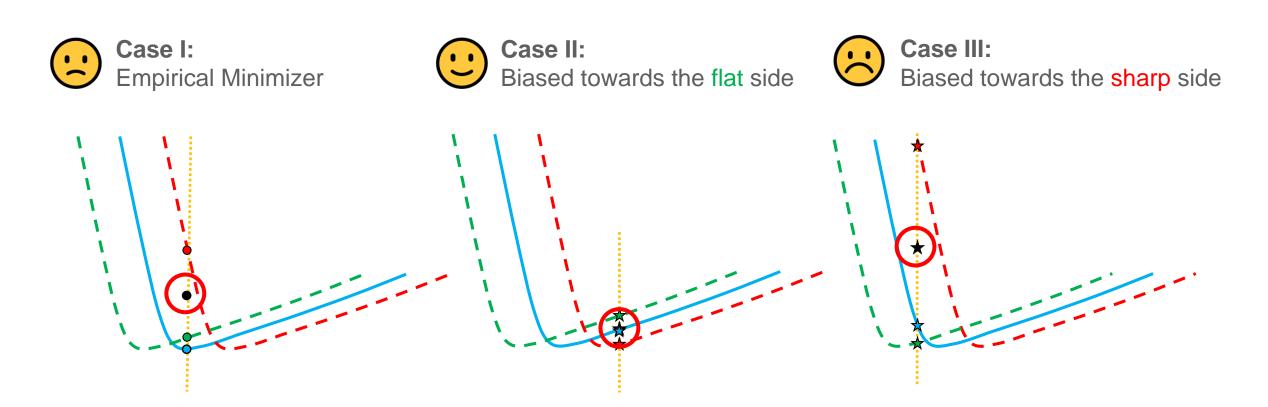








Our Proposal: Asymmetric Valley



Flat side biased solution (Case II) generalize better!

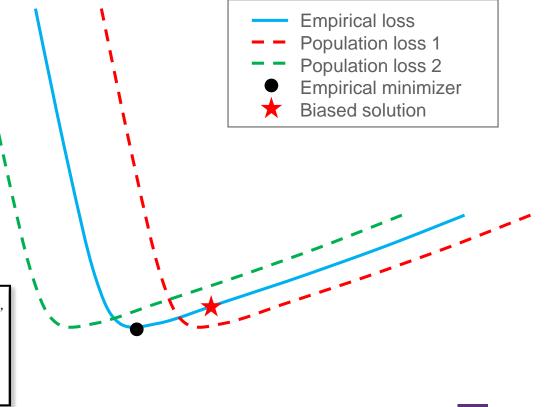
Main Theorem 1

Biased solution on the flat side of an asymmetric valley leads to better generalization

 $E_{\delta}L(\widehat{w}^*) - E_{\delta}L(\widehat{w}^* + c_0) > 0$

where c_0 is a bias towards the flat side, \hat{w}^* is an empirical solution

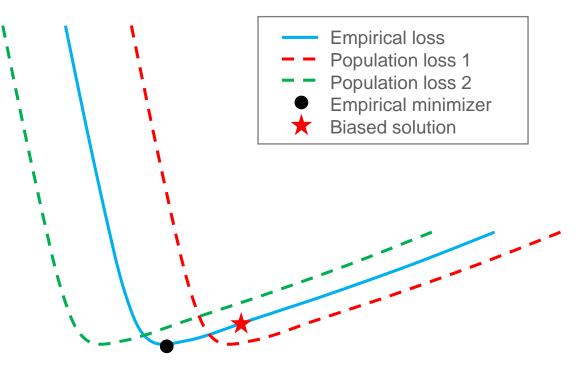
Theorem 1 (Bias leads to better generalization). For any $\boldsymbol{l} \in \mathbb{R}^k$, if Assumption 1 holds for $R = \|\boldsymbol{l}\|_2$, Assumption 2 holds for $R' = \|\bar{\boldsymbol{\delta}}\|_2 + \|\boldsymbol{l}\|_2$, and $\frac{4\xi}{(c_i-1)p_i} < \boldsymbol{l}_i \leq \max\{\bar{r} - \bar{\boldsymbol{\delta}}_i, \bar{\boldsymbol{\delta}}_i - \underline{r}\}$, then we have $\mathbb{E}_{\boldsymbol{\delta}} \mathsf{L}(\hat{\boldsymbol{w}}^*) - \mathbb{E}_{\boldsymbol{\delta}} \mathsf{L}\left(\hat{\boldsymbol{w}}^* + \sum_{i=1}^k \boldsymbol{l}_i \boldsymbol{u}^i\right) \geq \sum_{i=1}^k (c_i - 1) \boldsymbol{l}_i p_i / 2 - 2k\xi > 0$



Main Theorem 1

Two interesting implications:

- Converging to *which* local minimum may not be critical. However, it matters *where* the solution locates in a basin.
- The solution with lowest generalization error is **not** necessarily the minimizer of the training loss.



Asymmetric Valley and Biased Solution

How to obtain a biased solution towards the flat side of an asymmetric valley, empirically?

Main Theorem 2 (informal)

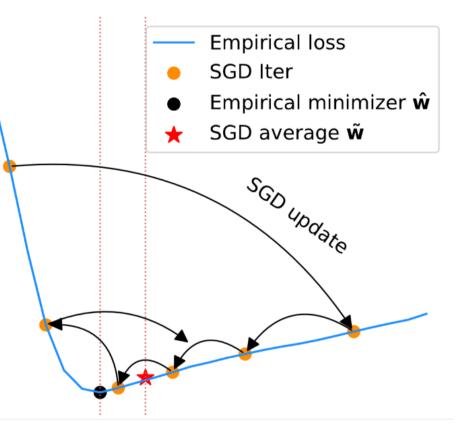
Taking the average of the weights along the path of SGD leads to a biased solution towards the flat side

 $E[\bar{w}] > c_0 > 0$ where c_0 is a bias towards the flat side, \bar{w} is SGD average

Theorem 2 (SGD averaging generates a bias). Assume that a local minimizer $w^* = 0$ is a $(r, 0, a_+, c)$ asymmetric valley, where $b_- \leq \nabla L(w) \leq a_- < 0$ for w < 0, and $0 < b_+ \leq \nabla L(w) \leq a_+$ for $w \geq 0$. Assume $-a_- = ca_+$ for a large constant c, and $\frac{-(b_--\nu)}{b_+} = c' < \frac{e^{c/3}}{6}$. The SGD updating rule is $w_{t+1} = w_t - \eta(\nabla L(w) + \omega_t)$ where ω_t is the noise and $|\omega_t| < \nu$, and assume $\nu \leq a_+$. Then we have

 $\mathbb{E}[\bar{w}] > c_0 > 0,$

where c_0 is a constant that only depends on η, a_+, a_-, b_+, b_- and ν .

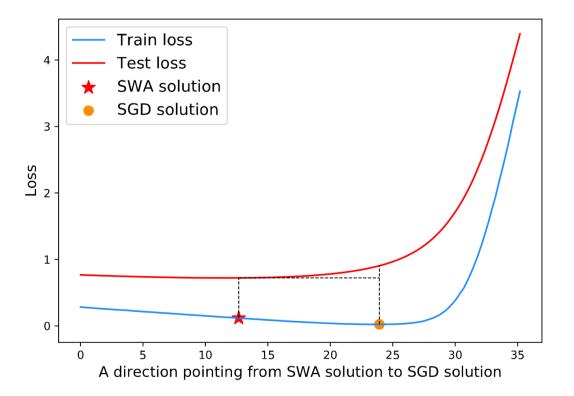


* Averaging weights leads to wider optima and better generalization. UAI, 2018. 11

Empirical Observation

Averaging SGD weight (SWA*) indeed finds a biased solution with higher training loss but lower test loss.

This phenomenon can **NOT** be well explained by the "flatness/sharpness" theory!



Future work

Leveraging asymmetric valleys (AVs):

- Designing new algorithms (e.g., SWA) based on our theory and intuition.
- Using the concept of AVs to explain which can not be explained by sharpness/flatness theory.

Understanding asymmetric valleys (AVs):

- Where AVs originate from?
- What network structure or loss function tend to cause AVs

Thanks

Asymmetric Valleys: Beyond Sharp and Flat Local Minima

Haowei He | Gao Huang | Yang Yuan

Poster: Tue Dec 10th 05:30 -- 07:30 PM @ East Exhibition Hall B + C #116

December 10th, 2019