
Batched Multi-armed Bandits Problem

Yanjun Han (Stanford EE)

Joint work with:

Zijun Gao Stanford Stats

Zhimei Ren Stanford Stats

Zhengqing Zhou Stanford Math

NeurIPS 2019, Vancouver, Canada



Background: Multi-armed Bandits (MAB)

sequential decision making

time horizon T

action space: K arms

random reward for each action

target: maximize the cumulative
rewards

Spam filtering Dynamic pricing Recommender system
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Partial Information in the “Space” Domain

Space Domain: Bandit Feedback

Only the reward of the pulled arm is revealed.
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Batched Multi-armed Bandit

Batched MAB problem:

limited rounds of actively querying data

split the time horizon into M batches

rewards revealed simultaneously at the end of each batch

Clinical trial Crowdsourcing Reinforcement learning

M = 1 M = T

batch learning online learning
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Partial Information in the “Time” Domain

Time Domain: Limited Rounds of Adaptivity

Feedbacks are only revealed in batches.
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Mathematical Formulation

time horizon T , number of arms K

stochastic MAB: pulling arm i gives reward rt ∼ N (µ(i), 1)

best arm µ? = maxi∈[K ] µ
(i), suboptimality gap ∆i = µ? − µ(i)

policy π: πt determined by the observed rewards before current batch

Regret

R(π) =
T∑
t=1

(
µ? − µ(πt)

)
.

Batch constraint represented by a grid t1 < t2 < · · · < tM = T

static grid: T = {t1, · · · , tM} fixed in advance

adaptive grid: the next grid point determined by historic data

task: design policy + grid
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Two Types of Regrets

Tight analysis of stochastic MAB [Vog’60, LR’85, AB’09]:

E[R(π1)] ≤ C ·
√
KT

E[R(π2)] ≤ C ·
∑
i 6=?

1 ∨ log(T∆2
i )

∆i

Minimax Regret

Rmin-max(K ,M,T ) = inf
π,T

sup
‖∆‖∞≤

√
K

E[R(π)]

Problem-dependent Regret

Rpro-dep(K ,M,T ) = inf
π,T

sup
∆>0

∆ · sup
∆i∈{0}∪[∆,

√
K ]

E[R(π)]
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Previous Results

Full online case:

Rmin-max(K ,T ,T ) = Θ(
√
KT )

Rpro-dep(K ,T ,T ) = Θ(K log(T ))

Required number of batches [ACBF’02, CBDS’13]:

Rmin-max(K , logT ,T ) = Θ̃(
√
KT ) (UCB2)

Rmin-max(K , log logT ,T ) = Θ̃(
√
KT ) (switching cost)

Two-armed case with static grid [PRCS’16]:

Rmin-max(2,M,T ) = Θ̃(T
1

2−21−M )

Rpro-dep(2,M,T ) = Θ̃(T
1
M )

Lower bounds typically very challenging [JJNZ’16, AAAK’17, DRY’18, ...].
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Main Result I: Upper Bound

Theorem 1 (Upper Bound)

There exist policies π1, π2 such that

E[R(π1)] ≤ polylog(K ,T ) ·
√
KT

1

2−21−M

E[R(π2)] ≤ polylog(K ,T ) · KT
1
M

mini 6=? ∆i

M = log logT batches sufficient for centralized minimax regret

M = logT batches sufficient for centralized problem-dependent regret
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BaSE Policy

BaSE (Batched Successive Elimination)

Input: K ,M,T , time grid T
Output: policy π

initialize the set of active arms A ← [K ];
for m = 1 to M do

pull all active arms for same number of times in m-th batch;
estimate the mean reward for each active arm;
eliminate all probably suboptimal arms from A.

end for
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Optimal Grid Design

Minimax Grid

Tminimax = {t1, · · · , tM} with

t1 = a, tm = ba
√
tm−1c,

where a is chosen such that tM = T .

Geometric Grid

Tgeometric = {t ′1, · · · , t ′M} with

t ′1 = b, t ′m = bbt ′m−1c,

where b is chosen such that t ′M = T .

T

t1 = T 4/7 t2 = T 6/7

t ′1 = T 1/3 t ′2 = T 2/3
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Main Result II: Static Lower Bound

Theorem 2 (Static Lower Bound)

Under any static grid,

Rmin-max(K ,M,T ) = Ω(
√
KT

1

2−21−M )

Rpro-dep(K ,M,T ) = Ω(KT
1
M )

match the upper bounds within logarithmic factors

proof uses a max-min approach: find multiple fixed reward
distributions under which no policy performs uniformly well
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Max-min: Fixed Hypothesis Testing

Fundamental idea of hypothesis testing: construct several reward
distributions such that

Large separation: if a policy performs well under one distribution, it
will perform badly under others

Indistinguishability: these reward distributions are information
theoretically hard to distinguish given observed rewards

Indistinguishability Lemma

Let Q1, · · · ,Qn be probability measures on some common probability
space. Then for any tree T = ([n],E ) and test Ψ,

1

n

n∑
i=1

Qi (Ψ 6= i) ≥
∑

(i ,j)∈E

1

2n
exp(−DKL(Qi‖Qj)).

13 / 16
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Main Result III: Adaptive Lower Bound

Theorem 3 (Adaptive Lower Bound)

Under any adaptive grid,

Rmin-max(K ,M,T ) = Ω(M−2 ·
√
KT

1

2−21−M )

Rpro-dep(K ,M,T ) = Ω(M−2 · KT
1
M )

still match the upper bounds within logarithmic factors

max-min approach breaks down even for static but randomized grid

use a min-max approach instead: construct corresponding reward
distributions after a policy is given
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Min-max: More Details

Construct reward distributions P1,P2, · · · ,PM and events A1, · · · ,AM .

Lemma 1 (Adaptive Hypotheses)

For any policy, if Pm(Am) is not too small for some m, then the policy
incurs a large regret in the worst case.

Lemma 2 (Covering of Events)

For any policy it holds that

M∑
m=1

Pm(Am) ≥ 1

2
.
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Concluding Remarks

Take-home message:

impact and optimal use of partial information in time domain

upper bound: BaSE policy with optimal grid design

lower bound: a min-max approach for adaptive grids

Future directions:

remove the M−2 factor in the adaptive lower bound

generalize to adversarial and contextual bandits

general tools for limited rounds of adaptivity

Thank you!
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