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Online Learning via the Differential Privacy Lens

/Online Learning

- DP inspired stability

- Unifying analysis framework
for existing online algos

- New algos with the first-
order regret bounds

DP inspired stability is well-suited to analyzing OL algorithms



Adversarial Online Learning Problems
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A sequential game between Learner and Adversary

Learner chooses its action x; € X', which can be random
Adversary chooses a loss function ¢; € ) (NOT random)
Full Info.: the entire function #; is revealed to the learner

Partial Info.: only the function value ¢;(y;) is revealed



Adversarial Online Learning Problems
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The learner’s goal is to minimize the expected regret:

T T
E[Regret ] = E[Z li(x¢)] — L, where L} = )r(r&i)r}Z@t(x).
t=1 t=1

Zero-order bound proves E[Regret] = o(T)
First-order bound proves E[Regret+] = o(L%)
o The first-order bound is more desirable if L% = o(T)

OCO, OLO, expert problems, MABs, bandits with experts



Differential Privacy

Let A be a randomized algorithm that maps a data set S to a
decision rule in X

e A(S) will be available to users but NOT S itself
e We do NOT want the users to infer our data set S from A(S)

e Suppose S and S’ differ only by a single entry
= We want A(S) and A(S’) to be similar



Differential Privacy

e The d-approximate max-divergence between two distributions
P and @ is (sup takes over all measurable sets)

D3.(P,Q) = log —~/——
(P Q)= 50, a()

e We say A is (¢,6)-DP if D (A(S), A(S") < e



New Stability Notions

Main Observation

In online learning, Follow-The-Leader algorithm performs badly
while F-T-Purturbed-L or F-T-Regularized-L do well.
Definition 1 (One-step differential stability)

For a divergence D, A is called DiffStable(D) at level ¢ iff for any
t and any /1.; € Vt, we have D(A(¢1.+-1), A({1.¢)) < €

Definition 2 (DiffStable, when losses are vectors)

For a norm || - ||, A is called DiffStable(D,|| - ||) at level € iff for
any t and any /1.; € Y, we have D(A(f1:t-1), A(f1:t)) < €||¢¢]|

Remark. ¢1.;_1 and /1.; only differ by one item!



Key Lemma

e "[ A xp = A(f1:6-1) ]
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Suppose loss functions always belong to [0, B] for some B and A is
DiffStable(D2.) at level € < 1. Then the regret of A satisfies

E[Regret(A) 7] < 2eL* + 3E[Regret(A") 7] + 6BT.

e We can adopt DiffStable algorithms from DP community
o E[Regret(A™") 7] is usually small (independent of T)
e § can be set to be as small as 1/BT



Online Convex Optimization

Algorithm 1 Online convex optimization using Obj-Pert

1: Given Obj-Pert solves the convex optimization while preserving DP
2. fort=1,---,T do

3:  Play x; = Obj-Pert({1.t—1;€,6, 3,7)

4: end for

e Algorithm 1 is automatically DiffStable due to Obj-Pert
(object perturbation) algorithm from DP literature

e When applying the Key Lemma, E[Regret(A")7] scales as 1
E[Regret(A) 1] < 2eL* + 3E[Regret(A*) ] + 6BT

e Tuning € and setting § = 1/BT, we get the first-order regret

bound of O(,/L%)



Other Applications

OLO/0CO, Expert Learning, MABs, Bandits with Experts
Zero-order and First-order regret bounds
Provide a unifying framework to analyze OL algorithms

Come to Poster #53 @ East Exhibition Hall B 4+ C
(that starts NOW!) for more details

Thanks!



