Cormorant: COvaRiant MOleculaR Artificial Neural neTworks Spotlight Presentation

Brandon M. Anderson *[‡] Truong Son Hy * Risi Kondor *^{† ‡}

*Department of Computer Science The University of Chicago

> [†]Department of Statistics The University of Chicago

[#]Center for Computational Mathematics Flatiron Institute

[‡]Atomwise

2019 Conference on Neural Information Processing Systems

Learning on molecular data

Learn on molecules:

Data has built-in symmetry \rightarrow Use covariant activations!

 $F(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_m)$

 $\sum_{i} Z_{i}/|\mathbf{r} - \mathbf{r}_{i}| = Q_{0}Y^{0}(\hat{\mathbf{r}})/r + Q_{1}Y^{1}(\hat{\mathbf{r}})/r^{2} + Q_{2}Y^{2}(\hat{\mathbf{r}})/r^{3} + \dots$

- Q_{ℓ} : ℓ -th multipole moment
- Y^{ℓ} : ℓ -th spherical harmonic

Consider a 90° CCW-rotation R:

Anderson, Son, Kondor (UChicago)

• • • • • • • • • •

Consider a 90° CCW-rotation R:

After a rotation:

Anderson, Son, Kondor (UChicago)

Consider a 90° CCW-rotation R:

After a rotation:

All moments rotate "covariantly": $Q_\ell o D^\ell(R) Q_\ell$

Clebsch-Gordan Transformation

Group theory:

$$D^{\ell_1}(R)\otimes D^{\ell_2}(R)=C^{\dagger}_{\ell_1,\ell_2}iggl[iggleq_{\ell=|\ell_1-\ell_2|}^{\ell_1+\ell_2}D^\ell(R)iggr] C_{\ell_1,\ell_2}$$

 $D^{\ell}(R)$: Wigner-D (Rotation) matrix $C_{\ell_1\ell_2}$: Clebsch-Gordan matrix $R \in \mathrm{SO}(3)$

- SO(3)-Vector: $F_{\ell,c}$
 - Transforms covariantly: $F_{\ell,c} \rightarrow D^{\ell}(R)F_{\ell,c}$

A D > A A > A > A

SO(3)-Vector: $F_{\ell,c}$

• Transforms covariantly: $F_{\ell,c}
ightarrow D^\ell(R) F_{\ell,c}$

Limited operations available:

• Linearly mixed: $\sum_{c} F_{\ell,c'} W_{c'c}$

SO(3)-Vector: $F_{\ell,c}$

• Transforms covariantly: $F_{\ell,c}
ightarrow D^\ell(R) F_{\ell,c}$

Limited operations available:

- Linearly mixed: $\sum_{c} F_{\ell,c'} W_{c'c}$
- Clebsch-Gordan product: $F_{\ell_1,c} \otimes_{\mathrm{CG}} F_{\ell_2,c} = C_{\ell_1\ell_2} \Big[\bigoplus_{\ell=|\ell_1-\ell_2|}^{\ell_1+\ell_2} F_{\ell,c} \Big]$

SO(3)-Vector: $F_{\ell,c}$

• Transforms covariantly: $F_{\ell,c}
ightarrow D^\ell(R) F_{\ell,c}$

Limited operations available:

- Linearly mixed: $\sum_{c} F_{\ell,c'} W_{c'c}$
- Clebsch-Gordan product: $F_{\ell_1,c} \otimes_{\mathrm{CG}} F_{\ell_2,c} = C_{\ell_1\ell_2} \Big[\bigoplus_{\ell=|\ell_1-\ell_2|}^{\ell_1+\ell_2} F_{\ell,c} \Big]$
- Construct scalars: $\sum_m |[F_\ell]_m|^2$

Table 1. GDB-9 results

Table 2. MD-17 results

	Cormorant	SchNet [3]	NMP [4]	WaveScatt [5]
α (bohr ³)	0.085	0.235	0.092	0.160
$\Delta \epsilon$ (eV)	0.061	0.063	0.069	0.118
ϵ_{HOMO} (eV)	0.034	0.041	0.043	0.085
ϵ_{LUMO} (eV)	0.038	0.034	0.038	0.076
μ (D)	0.038	0.033	0.030	0.340
C_v (cal/mol K)	0.026	0.033	0.040	0.049
G (eV)	0.020	0.014	0.019	0.022
H (eV)	0.021	0.014	0.017	0.022
R^2 (bohr ²)	0.961	0.073	0.180	0.410
U (eV)	0.021	0.019	0.020	0.022
U_0 (eV)	0.022	0.014	0.020	0.022
ZPVE (meV)	2.027	1.700	1.500	2.000

	Cormorant	DeepMD [6]	DTNN [7]	SchNet [3]	GDML [2]	sGDML [8]
Aspirin	0.098	0.201	-	0.120	0.270	0.190
Benzene	0.023	0.065	0.040	0.070	0.070	0.100
Ethanol	0.027	0.055	-	0.050	0.150	0.070
Malonaldehyde	0.041	0.092	0.190	0.080	0.160	0.100
Naphthalene	0.029	0.095	-	0.110	0.120	0.120
Salicylic Acid	0.066	0.106	0.410	0.100	0.120	0.120
Toluene	0.034	0.085	0.180	0.090	0.120	0.100
Uracil	0.023	0.085	-	0.100	0.110	0.110

- [1] R. Ramakrishnan, P. O. Dral, M. Rupp, and O A. von Lilienfeld. Scientific Data, 1, 140022 (2014).
- [2] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller. Sci. Adv. 3, e1603015 (2017)
- [3] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. J. Chem. Phys. 148, 241722 (2018)
- [4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and H. E. Dahl. PMLR 70, 1263, (2017).
- [5] M. Hirn, S. Mallat, and N. Poilvert. Multiscale Modeling Simulation, 15, 827 (2017).
- [6] L. Zhang, J. Han, H. Wang, R. Car, and W. E. Phys. Rev. Lett., 120, 143001 (2018).
- [7] K. T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Muller, and A. Tkatchenko. Nat. Comm. 8, 13890 (2017).
- [8] S. Chmiela, H. E. Sauceda, K.-R. Muller, and A. Tkatchenko. Nat. Comm., 9, 3887 (2018).

