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Learning Over-parameterized DNNs

Empirical observation on extremely wide deep neural networks (Zhang et
al. 2017; Bartlett et al. 2017; Neyshabur et al. 2018; Arora et al. 2019)

I Why can extremely wide neural networks generalize?
I What data can be learned by deep and wide neural networks?
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Learning Over-parameterized DNNs

I Fully connected neural network with width m:

fW(x) =
√
m ·WLσ(WL−1 · · ·σ(W1x) · · · )).

I σ(·) is the ReLU activation function: σ(t) = max(0, t).

I L(xi,yi)(W) = `[yi · fW(xi)], `(z) = log(1 + exp(−z)).

Algorithm SGD for DNNs starting at Gaussian initialization

W
(0)
l ∼ N(0, 2/m), l ∈ [L− 1], W

(0)
L ∼ N(0, 1/m)

for i = 1, 2, . . . , n do
Draw (xi, yi) from D.
Update W(i) = W(i−1) − η · ∇WL(xi,yi)(W

(i−1)).
end for
Output: Randomly choose Ŵ uniformly from {W(0), . . . ,W(n−1)}.
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Generalization Bounds for DNNs

Theorem

For any R > 0, if m ≥ Ω̃
(
poly(R,L, n)

)
, then with high probability, SGD returns Ŵ that satisfies

E
[
L0−1
D (Ŵ)

]
≤ inf

f∈F(W(0),R)

{
4

n

n∑
i=1

`[yi · f(xi)]

}
+O

[
LR√
n

+

√
log(1/δ)

n

]
,

where

F(W(0), R) =
{
fW(0)(·) + 〈∇WfW(0)(·),W〉 : ‖Wl‖F ≤ R ·m−1/2, l ∈ [L]

}
.

Neural Tangent Random Feature (NTRF) model
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Generalization Bounds for DNNs

Corollary

Let y = (y1, . . . , yn)> and λ0 = λmin(Θ(L)). If m ≥ Ω̃
(
poly(L, n, λ−10 )

)
, then with high probability,

SGD returns Ŵ that satisfies

E
[
L0−1
D (Ŵ)

]
≤ Õ

[
L · inf

ỹiyi≥1

√
ỹ>(Θ(L))−1ỹ

n

]
+O

[√
log(1/δ)

n

]
.

where Θ(L) is the neural tangent kernel (Jacot et al. 2018) Gram matrix.

Θ
(L)
i,j := limm→∞m

−1〈∇WfW(0)(xi),∇WfW(0)(xj)〉.

The “classifiability” of the underlying data distribution D can also be
measured by the quantity inf ỹiyi≥1

√
ỹ>(Θ(L))−1ỹ.

8 / 14



Generalization Bounds for DNNs

Corollary

Let y = (y1, . . . , yn)> and λ0 = λmin(Θ(L)). If m ≥ Ω̃
(
poly(L, n, λ−10 )

)
, then with high probability,
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Overview of the Proof

Key observations

I Deep ReLU networks are almost linear in terms of their parameters in a small neighbour-
hood around random initialization

fW′(xi) ≈ fW(xi) + 〈∇fW(xi),W
′ −W〉.

I L(xi,yi)(W) is Lipschitz continuous and almost convex

‖∇Wl
L(xi,yi)(W)‖F ≤ O(

√
m), l ∈ [L],

L(xi,yi)(W
′) & L(xi,yi)(W) + 〈∇WL(xi,yi)(W),W′ −W〉.

Optimization for Lipschitz and (almost) convex functions
+

Online-to-batch conversion
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fW′(xi) ≈ fW(xi) + 〈∇fW(xi),W
′ −W〉.

I L(xi,yi)(W) is Lipschitz continuous and almost convex

‖∇Wl
L(xi,yi)(W)‖F ≤ O(

√
m), l ∈ [L],

L(xi,yi)(W
′) & L(xi,yi)(W) + 〈∇WL(xi,yi)(W),W′ −W〉.

Applicable to general loss functions:
`(·) is convex/Lipschitz/smooth

⇒ L(xi,yi)(W) is (almost) convex/Lipschitz/smooth
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Summary

I Generalization bounds for wide DNNs that do not increase in network width.

I A random feature model (NTRF model) that naturally connects over-parameterized
DNNs with NTK.

I A quantification of the “classifiability” of data: inf ỹiyi≥1
√

ỹ>(Θ(L))−1ỹ.

I A clean and simple proof framework for neural networks in the “NTK regime” that
is applicable to various problem settings.

Thank you!

Poster #141
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