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• Common schedule: large initial learning rate + annealing 
• … But small learning rate: better train and test performance up until annealing

• Large LR outperforms small LR after annealing!
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LR schedule changes order of learning patterns => generalization

• Small LR quickly memorizes hard-to-fit “class signatures”
• Ignores other patterns, harming generalization

• Large initial LR + annealing learns easy-to-fit patterns first
• Only memorizes hard-to-fit patterns after annealing
• => learns to use all patterns, helping generalization!

• Intuition: larger LR 
• ⇒ larger noise in activations 
• ⇒ effectively weaker representational power 
• ⇒ won’t overfit to “signatures”

• Non-convexity is crucial: different LR schedules find different solutions
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Demonstration on Modified CIFAR10

• Small LR memorizes patch, ignores rest of the image
• ⇒ learns image from 20% examples

• Large initial LR initially ignores patch, only learns it after annealing
• ⇒ learns image from 80% examples
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Come find our poster: 10:45 AM -- 12:45 PM @ East Exhibition Hall B + C #144! 


