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e Large LR outperforms small LR after annealing!
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LR schedule changes order of learning patterns => generalization

Small LR quickly memorizes hard-to-fit “class signatures”
* |lgnores other patterns, harming generalization

Large initial LR + annealing learns easy-to-fit patterns first
* Only memorizes hard-to-fit patterns after annealing
* =>|earns to use all patterns, helping generalization!

Intuition: larger LR
* = larger noise in activations
« = effectively weaker representational power
= won’t overfit to “signatures”

Non-convexity is crucial: different LR schedules find different solutions
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Group 1: 20% examples with Group 2: 20% examples with Group 3: 60% examples
hard-to-generalize, easy-to- easy-to-generalize, hard-to- with both patterns
fit patterns fit patterns

original image hard-to-fit patch indicating class

 Small LR memorizes patch, ignores rest of the image
= |earns image from 20% examples

 Large initial LR initially ignores patch, only learns it after annealing
* = |earns image from 80% examples
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