Invertible Convolutional Flow

M. Karami, J. Sohl-Dickstein, D. Schuurmans, L. Dinh, D. Duckworth

University of Alberta, Google

Two ways to improve expressivity of normalizing flow: > Invertible convolution filter

- Invertible nonlinear gates

Circular Convolution

- Linear convolution of two sequences when one is padded cyclically

$$
\boldsymbol{y}(i):=\sum_{n=0}^{N-1} \boldsymbol{x}(n) \boldsymbol{w}(i-n)_{\bmod N}
$$

- Jacobian of this convolution forms a circulant matrix

$$
J_{C}=\left[\begin{array}{ccccc}
w_{0} & w_{N-1} & \ldots & w_{2} & w_{1} \\
w_{1} & w_{0} & \ddots & \ddots & w_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
w_{N-2} & \ddots & \ddots & w_{0} & w_{N-1} \\
w_{N-1} & w_{N-2} & \ldots & w_{1} & w_{0}
\end{array}\right]
$$

- Inverse operation (deconvolution)

$$
\boldsymbol{x}_{\mathcal{F}}(n)=\boldsymbol{w}_{\mathcal{F}}^{-1}(n) \boldsymbol{y}_{\mathcal{F}}(n)
$$

- These can be evaluated in $O(N \log N)$ time in the frequency domain, using FFT algorithms.

Symmetric Convolution

- Using even-symmetric expansion

$$
\hat{\boldsymbol{x}}(n)=\varepsilon\{\boldsymbol{x}(n)\}:= \begin{cases}\boldsymbol{x}(n) & n=0,1, \ldots, N-1 \\ \boldsymbol{x}(-n-1) & n=-N, \ldots,-1\end{cases}
$$

- The symmetric convolution can be defined as

$$
\boldsymbol{y}=\boldsymbol{w} *_{s} \boldsymbol{x}:=\mathcal{R}\{\hat{\boldsymbol{x}} \circledast \hat{\boldsymbol{w}}\}
$$

- The convolution-multiplication property holds for DCT of operands

$$
\mathcal{F}_{d c t}\{\boldsymbol{y}\}=\mathcal{F}_{d c t}\{\boldsymbol{w}\} \odot \mathcal{F}_{d c t}\{\boldsymbol{x}\}
$$

- The convolution, its Jacobian-determinant and inversion (deconvolution) can be performed efficiently in $O(N \log N)$.

data-adaptive invertible convolution flow

- Let x_{1} and x_{2} are the disjoint parts of the input x.
- A data-adaptive convolution is defined by convolving x_{2} with an arbitrary function of x_{1}

$$
f_{*}\left(\boldsymbol{x}_{2} ; \boldsymbol{x}_{1}\right)=\boldsymbol{w}\left(\boldsymbol{x}_{1}\right) * \boldsymbol{x}_{2}
$$

- Using any of the invertible convolutions, this transform is invertible with cheap inversion and cheap log-det-Jacobian computation

Pointwise nonlinear bijectors

- log-det-Jacobian term in the log-likelihood equation can be interpreted as a regularizer.
- If we would like to encourage some desirable statistical properties, formulated by a regularizer $\gamma(y)$, in intermediate layers of a flow-based model, we can do so by carefully designing nonlinearities $y=f(x)$.
- $f(x)$ is obtained by solving the differential equation

$$
\left|\frac{\partial f^{-1}}{\partial y}\right|=\left|\frac{\partial g}{\partial y}\right|=e^{\gamma(y)}
$$

- For l1 regularization, inducing sparsity, this leads to the $\mathbf{S}-\mathbf{L o g}$ gate defined as

$$
\begin{aligned}
f_{\alpha}(x) & =\frac{\operatorname{sign}(x)}{\alpha} \ln (\alpha|x|+1) \\
f_{\alpha}^{-1}(y) & =\frac{\operatorname{sign}(y)}{\alpha}\left(e^{\alpha|y|}-1\right)
\end{aligned}
$$

S-Log gate which is differentiable and has unbounded domain and range by construction

Convolutional coupling flow (CONF)

- Combining the invertible convolution, element-wise multiplication and nonlinear bijectors, we achieve a more expressive flow in the coupling form:

$$
\left\{\begin{array}{l}
\boldsymbol{y}_{1}=\boldsymbol{x}_{1} \\
\boldsymbol{y}_{2}=f_{\alpha^{\prime}}\left(\boldsymbol{s}\left(\boldsymbol{x}_{1}\right) \odot f_{\alpha}\left(\boldsymbol{w}\left(\boldsymbol{x}_{1}\right) * \boldsymbol{x}_{2}\right)\right)+\boldsymbol{t}\left(\boldsymbol{x}_{1}\right)
\end{array}\right.
$$

