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[Jacot, Gabriel, Hongler, 2018; Du, Zhai, Poczos, Singh, 2018; Chizat, Bach,
2018b; Arora, Du, Hu, Li, Wang, 2019; Allen-Zhu, Li, Song, 2018; Yehudai,
Shamir, 2019; ...]
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Questions:
I Do RF/NT provide a good approximation to effectively trained NN?
I Do RF/NT learn effective/smart representations of the data?

Setting:

I xi � N(0; Id) ,

yi = f�(xi) � hxi;Bxii+ b0; with B � 0

I Here �(x) = x2 (cf. paper for generalization)

I The neural network NN is trained by SGD

I Compare population squared error loss
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Results
I B 2 R450�450, �i(B) �iid exp(1)

I N varies in f30; : : : ; 4500g
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Figure: Lines are analytical predictions and dots are empirical results.
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Interpretation

I RF model does not capture quadratic functions (regardless of the
non-linearity)

I The NTmodel fits random directions spanned by (w0

1
; : : : ;w0

N
)

I Fully trained NN learns the most important eigendirections

I 9B arbitrarily large gap between NN and NT

Neural networks are superior to linearized model such as RF and NT, because
they can learn a good representation of the data

These phenomena are more general: mixture of Gaussians, ReLu activation...
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Thank you!

For further discussions, you can visit our poster:

Poster # 230
East Exhibition Hall B + C

5:00 - 7:00pm, Wednesday 11th

If you have any questions: please email us at misiakie@stanford.edu

“Limitations of Lazy Training of Two-layers
Neural Networks”

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, Andrea Montanari
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