## **Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity**

## Chulhee Yun, Suvrit Sra, Ali Jadbabaie

Laboratory for Information and Decision Systems, MIT





Given a ReLU fully-connected network, how many hidden nodes are required to memorize arbitrary *N* data points?



## Given a ReLU fully-connected network, how many hidden nodes are required to memorize arbitrary *N* data points?





We prove that for 2-hidden-layer networks,

 $\Theta(\sqrt{Nd_y})$  neurons are **sufficient**. If  $d_y = 1$ ,  $\Theta(\sqrt{N})$  neurons are also **necessary**.



We prove that for 2-hidden-layer networks,

 $\Theta(\sqrt{Nd_y})$  neurons are **sufficient**. If  $d_y = 1$ ,  $\Theta(\sqrt{N})$  neurons are also **necessary**.





We prove that for 2-hidden-layer networks,

 $\Theta(\sqrt{Nd_y})$  neurons are **sufficient**. If  $d_y = 1$ ,  $\Theta(\sqrt{N})$  neurons are also **necessary**.











#### **Classification:**







#### **Classification:**



ImageNet (N = 1M,  $d_y = 1$ k) memorized with 2k-2k-4k





#### **Classification:**





#### 2 hidden layers:





#### 2 hidden layers:



#### *L* hidden layers:





#### 2 hidden layers:



#### *L* hidden layers:



A Network with W params can memorize if  $W = \Omega(N)$ 



 $C = \max\{N \mid \text{the network can memorize arbitrary } N \text{ data points with } d_v = 1\}$ 



 $C = \max\{N \mid \text{the network can memorize arbitrary } N \text{ data points with } d_v = 1\}$ 

 $\Theta(\sqrt{N})$  neurons necessary and sufficient for 2-hidden-layer

 $\implies C = \Theta(W)$ 



 $C = \max\{N \mid \text{the network can memorize arbitrary } N \text{ data points with } d_v = 1\}$ 

 $\Theta(\sqrt{N})$  neurons necessary and sufficient for 2-hidden-layer

 $\implies C = \Theta(W)$ 







 $C = \max\{N \mid \text{the network can memorize arbitrary } N \text{ data points with } d_v = 1\}$ 

 $\Theta(\sqrt{N})$  neurons necessary and sufficient for 2-hidden-layer  $\implies C = \Theta(W)$ 



 $W = \Omega(N)$  sufficient for *L*-hidden-layer

 $\implies C = \Omega(W)$ 

$$C \leq \text{VCdim} = O(WL \log W)$$



 $C = \max\{N \mid \text{the network can memorize arbitrary } N \text{ data points with } d_v = 1\}$ 

 $\Theta(\sqrt{N})$  neurons necessary and sufficient for 2-hidden-layer  $\implies C = \Theta(W)$ 

 $W = \Omega(N)$  sufficient for *L*-hidden-layer

 $\implies C = \Omega(W)$ 

$$C \leq \text{VCdim} = O(WL \log W)$$





## **Other results**

- Tighter sufficient condition for memorizing in residual network
- SGD trajectory analysis near memorizing global minimum

# Poster #233 Wed Dec 11th 5PM-7PM @ East Exhibition Hall B + C

