A unified theory for the origin of grid cells through the lens of pattern formation

Ben Sorscher*, Gabriel C. Mel*, Surya Ganguli, Sam Ocko

Grid cells

Trained neural networks learn grid patterns

Trained neural networks learn grid patterns

1. Why are the optimal maps grids?

2. What determines the optimal grid type - square, amorphous, or hexagonal?

 $\min_{W,G} \|P - WG\|^2$

 $\min_{W,G} \|P - WG\|^2$

 $\min_{W,G} \|P - WG\|^2$

1. Why are the optimal maps grids?

 $\min_{W,G} \|P - WG\|^2$

1. Why are the optimal maps grids? Translation invariance => Fourier modes

1. Why are the optimal maps grids? Translation invariance => Fourier modes

2. What determines the optimal grid type - square, amorphous, or hexagonal?

1. Why are the optimal maps grids? Translation invariance => Fourier modes

2. What determines the optimal grid type - square, amorphous, or hexagonal?

$$\min_{W,G} \|P - WG\|^2$$

$$\min_{W,G} \|P - WG\|^2 + \sigma(G)$$

$$\min_{W,G} \|P - WG\|^2 + \sigma(G)$$

$$\min_{W,G} \|P - WG\|^2 + \sigma(G)$$

Taylor expand constraint $\,\sigma\,$

$$\sigma(G) \approx \sigma_0 + \sigma_1 G + \frac{1}{2}\sigma_2 G^2 + \frac{1}{6}\sigma_3 G^3 + \cdots$$

$$\min_{W,G} \|P - WG\|^2 + \sigma(G)$$

Taylor expand constraint $\,\sigma\,$

←

$$\min_{W,G} \|P - WG\|^2 + \sigma(G)$$

Taylor expand constraint $\,\sigma\,$

Unifying mechanistic and normative models

Grid cell model RNNs

Normative encoding models

Skaggs et al. (1995) Zhang (1996) Fuhs and Touretzky (2006) Burak and Fiete (2009) Banino et al. (2018) Cueva & Wei (2018) Dordek et al. (2016) Stachenfeld et al. (2014)

Unifying mechanistic and normative models

Unifying mechanistic and normative models

