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Our focus is on tools to test for biases in single-blind conference peer review
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Tomkins, Zhang and Heavlin, 2017

Reviewers are allocated g Q Each paper is assigned
to conditions uniformly to 2 SB and 2 DB
at random / SB condition \eViewerS
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Tomkins, Zhang and Heavlin, 2017

Results of the experiment

® SB review induces biases in favour of papers authored by
+ Researchers from top universities
+ Researchers from top companies
+ Famous researchers

® No bias against female authors observed, but meta-analysis detects it
e \WWSDM switched to double-blind peer review in 2018
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Peer review setup has many idiosyncrasies and requires utmost care
when making policy-changing conclusions.

Negative results
We uncover a number of issues in the methodology of the past work and show

that one cannot use off-the-shelf procedures to test for biases

Positive results
We design a principled approach towards testing for biases in peer review
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e False alarm. Claiming the bias when the bias is absent

® Correct detection. Claiming the bias when the bias is present

Reliable testing
maximize probability of correct detection

s.t. probability of false alarm < 0.05

Control over false alarm probability is of utmost importance
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Idiosyncrasies of peer review make testing difficult and
break false alarm guarantees of the past work
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Novel experimental setup

Minimal changes to the standard peer-
review process. Accommodates
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We design a principled approach towards testing for biases with
strong rigorous guarantees on false alarm control
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Correct Detection

Our test also performs well in detecting the bias
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All assumptions of the
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past work are satisfied

® Much higher probability of detection in «hard» cases where the past work fails

® Not too much loss in power when the assumptions made in the past work are exactly met



Want to Know More?

Please come to the poster session!
5PM @ East Exhibition Hall B + C, #115




