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What is PCR?1



3

What is PCR?1
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What is PCR?1

Step 1: PCA 



What is PCR?1

Step 1: PCA
(k-components)
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What is PCR?1

Step 2: Regression

minimize
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What is PCR?1

Step 3: Prediction
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When & Why Use PCR2
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Data Science Folklore2

“IF DATA IS (APPROXIMATELY) LOW-DIMENSIONAL, USE PCR!”

-- LOREM IPSUM 

-- Anonymous Data Scientists

When exactly should we be using PCR?
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Key Questions We Answer2

Theoretical properties of PCR?

Is dimension-reduction only benefit to PCR?
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Our Theoretical Analysis of PCR helps answer 
following questions..

How many principal components to pick?

How low-rank do covariates need to be?

How well does PCR perform on a test data 
(i.e. generalization properties)?



12-- LOREM IPSUM 

NO!

Is Dimension-Reduction Only Benefit?
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PCR (as is) works for a wide variety of settings! 2
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We show PCR is surprisingly robust to problems 
that plague large-scale modern datasets

Main Contribution of this Work
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Error-In Variable Regression

(Setting We Consider)
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Classical (high-dimensional) Regression2
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Error-in-Variable (EIV) Regression2

??

? ?

Representative of modern datasets
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EIV - Surprising Number of Applications2

Causal Inference (Synthetic Control)

Time Series Analysis

Differentially-private Regression

Mixed Valued Regression

(noise by design)

(measurement noise)

(structural noise)

(measurement noise)
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EIV - Surprising Number of Applications2

Causal Inference (Synthetic Control)

Time Series Analysis

Differentially-private Regression

Mixed Valued Regression

(noise by design)

(structural noise)

(measurement noise)

(measurement noise)
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Formal Results
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Theorem (Informal): Training Error2

OLS minmax error rate 
(low-dimensional, noiseless, fully observed covariates)

PCR implicitly denoises 
covariates! 

If principal components chosen correctly (" = $)

fraction of observations

number of covariates
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Theorem (Informal): Testing Error2

If principal components not chosen correctly (" ≠ $)

Test Error Train Error with PCR(")

PCR implicitly de-noises 
covariatesPCR implicitly performs 

&'-regularization

Choose k that minimizes above
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When To and Not to Use PCR? – Look at Spectrum2

Don’t Use PCR!Use PCR!
Magnitude of 

Singular Values

Singular Values 
(ordered by 

magnitude)

Case 1 Case 3

Case 2 Case 4
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Exponential-decaying spectrum is ubiquitous in real-world data 2

GDP Trajectories (Macroeconomics)
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Avito Ad-Click Dataset (E-Commerce)

Exponential-decaying spectrum is ubiquitous in real-world data 2
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Cricket Trajectories (Sports)

Exponential-decaying spectrum is ubiquitous in real-world data 2
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Surprising Applications of PCR3
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Applications of Error-In-Variable Regression3

Causal Inference (Synthetic Control)

Time Series Analysis

Differentially-private Regression

Mixed Valued Regression

(noise by design)

(measurement noise)

(structural noise)

(measurement noise)
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Data privacy is top-of-mind as we increasingly apply ML on 
sensitive user data  (genetic data, purchase history etc.) 
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Standard Notion of Privacy in ML 

ε-Differential Privacy

Intuitively, an algorithm is ε-differentially private if outcome of a 
statistical query on a database cannot change by more than ε due to 

presence/absence of any user data record

Example of Statistical Query: 
“Average Income of all users between ages 25 and 30”
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How to achieve ε-differentially privacy?

Laplace Mechanism

database

Laplacian Noise 
⁄" #
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Predictive Accuracy vs. Privacy Tradeoff 

Can we achieve good prediction error and still maintain privacy? 

Yes!
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Predictive Accuracy vs. Privacy Tradeoff 

Can we achieve good prediction error and still maintain privacy? 

Step 1: 
Data Owner adds Laplacian Noise

Step 2: 
Analyst Performs PCR

Done!
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What is sample complexity cost for ε-differential privacy?

Prediction Error

Does de-noising step (PCA) break privacy?

No, PCA only de-noises covariates on average

with respect to the                   - norm           
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Conclusion4
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Inspect spectrum of your covariate matrix

Magnitude of 
Singular Values

Singular Values 
(ordered by 

magnitude)

Case 1

Case 2
de-noises

Use PCR!

regularizes



37

Possible Implications for Modern ML

Step 1: Dimension Reduction

PCA

Linear Case

Linear low-dimensional covariate pre-
processing has many implicit benefits (e.g. de-

noising, regularizing)

Non-Linear Case

Does non-linear covariate pre-processing 
(e.g. GANs) have similar benefits for 

unstructured data?

GANs?
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Come Meet Us At Our Poster

Poster #3 – East Exhibition Hall B + C, 5-7pm, Thursday

Shameless Plug :)

PCR for Time Series Analysis: tspdb.mit.edu

PCR for Causal Inference: github.com/Romcos/SC_demo


