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This work

Differentially private (DP) algorithms for 
stochastic convex optimization with optimal excess population risk



Stochastic Convex Optimization (SCO)
Unknown distribution (population)  𝒟 over data universe 𝒵

Dataset 𝑆 = 𝑧&, … , 𝑧) ∼ 𝒟)
Convex loss function ℓ: 𝒞 × 𝒵 → ℝ
Convex parameter space 𝒞 ⊂ ℝ2 𝐿4/𝐿4 setting:

𝒞 and 𝜕ℓ are bounded in 𝐿4-norm 



A SCO algorithm, given 𝑆, outputs 7𝜃 ∈ 𝒞 s.t.

Excess Pop. Risk ≜ 𝔼<∼𝒟 ℓ 7𝜃, 𝑧 − min
A∈𝒞

𝔼<∼𝒟 ℓ 𝜃, 𝑧

is as small as possible
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Private Stochastic Convex Optimization (PSCO)

Goal: 𝜖, 𝛿 -DP algorithm 𝒜FGHI that, given 𝑆, outputs 7𝜃 ∈ 𝒞 s.t.
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Main Result

Optimal non-private
population risk

Optimal private
empirical risk

[BST14]
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Main Result
Optimal excess population risk for PSCO is ≈ max &
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2

L )

When 𝑑 = Θ 𝑛 (common in modern ML)

Opt. risk for PSCO ≈ &
)
= opt. risk for SCO

asymptotically no cost of privacy



Algorithms
Two algorithms under mild smoothness assumption on ℓ :

Ø A variant of mini-batch noisy SGD: 

Ø Objective Perturbation (entails rank assumption on ∇4ℓ )
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Algorithms
Two algorithms under mild smoothness assumption on ℓ :

Ø A variant of mini-batch noisy SGD: 

Ø Objective Perturbation (entails rank assumption on ∇4ℓ )

• The objective function in both algorithms is the empirical risk.

• Generalization error is bounded via uniform stability: 

o For the first algorithm: uniform stability of SGD [HRS15, FV19].

o For the second algorithm: uniform stability due to regularization.



Algorithms
• General non-smooth loss:

Ø A new, efficient, noisy stochastic proximal gradient algorithm: 

o Based on Moreau-Yosida smoothing 

o A gradient step w.r.t. the smoothed loss is equivalent to a 

proximal step w.r.t. the original loss.



Results vs. Prior Work on DP-ERM
This work 
• Optimal excess population risk for PSCO is ≈ max &

)
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Previous work
• Focused on the empirical version (DP-ERM): [CMS11, KST12, BST14, TTZ15, …]

• Optimal empirical risk is previously known [BST14], but not optimal population

risk.

• Best known population risk using DP-ERM algorithms ≈ max 2Q/R

)
, 2
L )

[BST14].
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