Private Stochastic Convex Optimization

with Optimal Rate

Raef Bassily

Ohio State University

Vitaly Feldman

Google Brain

Kunal Talwar

Google Brain

Abhradeep Guha Thakaurta

UC Santa Cruz

Google Brain

This work

Differentially private (DP) algorithms for stochastic convex optimization with optimal excess population risk

Stochastic Convex Optimization (SCO)

Unknown distribution (population) \mathcal{D} over data universe \mathcal{Z}

```
Convex parameter space \mathcal{C} \subset \mathbb{R}^d
Convex loss function \ell \colon \mathcal{C} \times \mathcal{Z} \to \mathbb{R}
Dataset S = (z_1, ..., z_n) \sim \mathcal{D}^n
```

$$L_2/L_2$$
 setting: ${\cal C}$ and $\partial \ell$ are bounded in L_2 -norm

Stochastic Convex Optimization (SCO)

Unknown distribution (population) \mathcal{D} over data universe \mathcal{Z}

Convex parameter space $\mathcal{C} \subset \mathbb{R}^d$ Convex loss function $\ell : \mathcal{C} \times \mathcal{Z} \to \mathbb{R}$

 L_2/L_2 setting: ${\cal C}$ and $\partial \ell$ are bounded in L_2 -norm

Dataset $S = (z_1, ..., z_n) \sim \mathcal{D}^n$

A SCO algorithm, given S, outputs $\hat{\theta} \in C$ s.t.

Excess Pop. Risk
$$\triangleq \mathbb{E}_{z \sim \mathcal{D}} [\ell(\hat{\theta}, z)] - \min_{\theta \in \mathcal{C}} \mathbb{E}_{z \sim \mathcal{D}} [\ell(\theta, z)]$$

is as small as possible

Well-studied problem: optimal rate $\approx \frac{1}{\sqrt{n}}$

Private Stochastic Convex Optimization (PSCO)

Unknown distribution (population) $\mathcal D$ over data universe $\mathcal Z$

```
Convex parameter space \mathcal{C} \subset \mathbb{R}^d L_2/L_2 setting:
Convex loss function \ell \colon \mathcal{C} \times \mathcal{Z} \to \mathbb{R} \mathcal{C} and \partial \ell are bounded in L_2-norm
```

Dataset
$$S = (z_1, ..., z_n) \sim \mathcal{D}^n$$

Goal: (ϵ, δ) -DP algorithm \mathcal{A}_{priv} that, given S, outputs $\hat{\theta} \in \mathcal{C}$ s.t.

Excess Pop. Risk
$$\triangleq \mathbb{E}_{z \sim \mathcal{D}} [\ell(\hat{\theta}, z)] - \min_{\theta \in \mathcal{C}} \mathbb{E}_{z \sim \mathcal{D}} [\ell(\theta, z)]$$

is as small as possible

Main Result

Optimal excess population risk for PSCO is $\approx \max\left(\frac{1}{\sqrt{n}}, \frac{\sqrt{d}}{\epsilon n}\right)$

Optimal non-private population risk

Optimal private empirical risk
[BST14]

Main Result

Optimal excess population risk for PSCO is $\approx \max\left(\frac{1}{\sqrt{n}}, \frac{\sqrt{d}}{\epsilon n}\right)$

When $d = \Theta(n)$ (common in modern ML)

Opt. risk for **PSCO** $\approx \frac{1}{\sqrt{n}} = \text{opt. risk for SCO}$

asymptotically no cost of privacy

Two algorithms under *mild smoothness assumption on* ℓ :

- > A variant of mini-batch noisy SGD:
- ightharpoonup Objective Perturbation (entails rank assumption on $abla^2\ell$)

Two algorithms under *mild smoothness assumption on* ℓ :

- > A variant of mini-batch noisy SGD:
- \triangleright Objective Perturbation (entails rank assumption on $\nabla^2 \ell$)
- The objective function in **both** algorithms is the **empirical risk**.

Two algorithms under *mild smoothness assumption on* ℓ :

- > A variant of mini-batch noisy SGD:
- \triangleright Objective Perturbation (entails rank assumption on $\nabla^2 \ell$)
- The objective function in **both** algorithms is the **empirical risk**.
- Generalization error is bounded via uniform stability:
 - For the first algorithm: uniform stability of SGD [HRS15, FV19].
 - For the second algorithm: uniform stability due to regularization.

- General non-smooth loss:
 - > A new, efficient, noisy stochastic proximal gradient algorithm:
 - Based on Moreau-Yosida smoothing
 - A gradient step w.r.t. the smoothed loss is equivalent to a proximal step w.r.t. the original loss.

Results vs. Prior Work on DP-ERM

This work

• Optimal excess population risk for PSCO is $\approx \max\left(\frac{1}{\sqrt{n}}, \frac{\sqrt{d}}{\epsilon n}\right)$

Previous work

- Focused on the empirical version (DP-ERM): [CMS11, KST12, BST14, TTZ15, ...]
- Optimal empirical risk is previously known [BST14], but not optimal population risk.
- Best known **population risk** using *DP-ERM algorithms* $\approx \max\left(\frac{d^{1/4}}{\sqrt{n}}, \frac{\sqrt{d}}{\epsilon n}\right)$ [BST14].

Poster #163

Full version: arXiv:1908.09970