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Backgrouna

« Offline model-based reinforcement learning.
(RL using environment model and previously collected offline data)

« Typical approach:
1. Estimating model by standard supervised learning.
2. Planning policy using estimated model.

e |ssue:
Model estimation without considering covariate shift.
* Training data (offline data) is sampled using data-collecting policy.
* Test data (real future data) is sampled using newly planned policy.



Key idea

« Importance-weighted model estimation can improve predictive performance
under covariate shift.
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Key idea

« Importance-weighted model estimation can improve predictive performance
under covariate shift.
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« Natural idea:

distribution of real future data

w(s,a) = distribution of offline data
e Qur idea: /\/Ve can generate simulated\
future data in simulation.
distribution of simulated future data Estimating this weight is
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distribution of offline data
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Question

Our idea may not seem natural from viewpoint of covariate shift. |s it valid?



Justification

Our idea can be seen evaluating upper bound of policy evaluation error.

In(Pg,m) —n(P.,m)| < BJE[-w(s,a)InPy(s'|s,a)] — const



Justification: derivation

Policy evaluation error
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Importance-weighted loss function



| 0ss functions

« (Repeat) upper bound of policy evaluation error

In(Pg,m) —n(P,m)| < B\/E[—W(S, a)InPy(s'|s,a)] — const

« Policy evaluation:

L(O) = E[—w(s,a)InPy(s’|s,a)]

« Policy optimization:

J(0,m) =n(Pg,m) — B’\/E[—W(S, a)InPy(s'|s,a)] — const



Algorithm: policy evaluation (full version)

e |_oss function:

L(O) = E[— g (s,a)InPy(s'|s, a) ZWg(S a)InPy(s'|s,a)

« Gradient-based optimization:

VL(O) ~ —z W2 (s, a){VIn Py(s'|s,a) + In Py(s'|s,a) VIn d(s)}

Ratio estimation for Extension of LSDG
supervised learning [Morimura+2010]




Algorithm: policy evaluation (simplified version)
e (Repeat) gradient:

VL(O) = —Z wg (s,a){VInPy(s'|s,a) + InPg(s'|s,a) VInd(s)}

Estimating VInd(s) is computationally heavy, because it is the same number of value
function of forward Bellman equation as the number of parameters.

« Simplified version:

— z wg (s,a)VInPg(s'|s,a)



Algoritnm: policy optimization

e |_oss function:

J(8,m) = n(Pg,m) — B'\JE[-w(s,a) InPy(s'|s,a)] — const

mpected return ] Penalty for policy evaluation error ]

« EM-style optimization of majorization-minimization surrogate of J(0, n):

E-step: modification of weighted model estimation for policy evaluation.
M-step: policy optimization in simulated MDP with penalized reward.



Pendulum swing-up prediction using small NNs
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Fig (a) shows real future data Fig (b) shows result of standard supervised learning.
obtained using optimal policy. Fig (c) shows result of weighted model estimation.
The goal is to predict swing-up. Black markers are simulated future data.
Colored markers are offline data, where coloring indicates importance weighting.
X Fig (b) cannot capture swing-up, because small NNs cannot generalize globally.
O Fig (c) can capture swing-up, because small NNs can generalize locally around
swing-up behavior, based on importance weighting.



DARL MuloCo benchmark

%El\/l—style algorithm ]

dataset | CQL [37] originalMOPO [8] | a=0 a=0.2
HaltCheetah-random 35.4 354+ 2.5 48.7 £ 2.8 49.1 £3.2
HalfCheetah-medium 4 4234+ 1.6 757+ 1.5 73.1 =5.2
HalfCheetah-medium-replay 46.2 53.1 &£ 2.0 72.1 1.4 65.5 64
HalfCheetah-medium-expert 62.4 63.3 4+ 38.0 739242 | 8.7 £ 21.6
Hopper-random 10.8 1.7+ 04 30.2+ 4.4 327+ 0.5
Hopper-medium 86.6 280 £ 12.4 1009 £2.7 | 1041 £ 1.2
Hopper-medium-replay 48.6 67.5 £ 24.7 97.2 £ 10.9 | 104.0 £ 3.2
Hopper-medium-expert 111.0 23.7 £ 6.0 1093 £ 1.1 | 104.9 = 10.1
Walker2d-random 7.0 13.6 £2.6 16.5 £ 6.6 18.4 £ 7.6
Walker2d-medium 74.5 17.8 £19.3 81.7+ 1.2 | 60.7 £29.0
Walker2d-medium-replay 32.6 39.0 9.6 80.7 £+ 3.1 827+ 3.3
Walker2d-medium-expert 08.7 44.6 £ 12.9 59.5+£494 | 1082+ 0.5

e OQur EM-style algorithm improves performance for walker2d-medium-expert dataset.




L imitation

« Full version of our algorithm is derived from theory, but it cannot be applied
to large-scale problems due to large amount of computation.

« Simplified version of our algorithm is practical, but it has no convergence
with respect to loss function.



Conclusion

« We discuss model estimation considering covariate shift in offline MBRL.

 Qur idea is importance-weighting with distribution ratio of offline data and
simulated future data.

* Question: our idea may not seem natural. |s it valid?
« Qur idea is justified as evaluating upper bound of policy evaluation error.

 We propose EM-style algorithm based on our idea. It improves
performance in numerical experiments.



Future issues

« Extension to Bayesian MBRL.
« Combining with loss functions in decision-aware model learning approaches.
« Model selection based on importance-weighted loss function.

« Addressing extrapolation.
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