On Provable Benefits of Depth in Training
Graph Convolutional Networks

Weilin Cong Morteza Ramezani
Pennsylvania State University Pennsylvania State University
wxc2720psu.edu morteza@cse.psu.edu

Mehrdad Mahdavi
Pennsylvania State University
mzm6160psu.edu

!‘o,, PennState

Motivation

» Graph neural networks have achieved state-of-the-art
performance in many graph-structured applications.

 Existing GNNs are limited to very shallow structures because
GNNs suffer from performance degradation issue as the number
of layers increases.

* The conventional wisdom is that adding the number of layers
cause over-smoothing.

* We observe that there exists a discrepancy between the
theoretical understanding of the inherent capabilities of GNN
and their practical performance.

Motivation

« Experiment observations Example code

import dgl.data

dataset = dgl.data.CoraGraphDataset()

print('Number of categories:', dataset.num classes)
, Train F1-score / Iters
from dgl.nn import GraphConv 1.05
class GCN(nn.Module):
def init_ (self, in_feats, h feats, num classes, num_ layers=2): 1.00 1 —— Train: GCN (1ayer=2)
super (GCN, self). init_ () . 3. —
self.convs = nn.ModuleList() 0.95 - Vall.d. GCN (layer 2)
self.num_layers = num_layers o Train: GCN (layer=4)
. S Valid: GCN (layer=4)
self.convs.append(GraphConv(in_feats, h_feats)) & 0.90 1 .
for _ in range(num_layers-2): — —— Train: GCN (layer=6)
self.convs.append(GraphConv(h_feats, h_ feats)) [-==- Valid: GCN (1ayer=6)
self.convs.append(GraphConv(h_feats, num classes)) 0.85 1 .
—— Train: GCN (layer=8)
def forward(self, g, h): 0.80 1 ---- Valid: GCN (layer=8)
for ell in range(self.num layers-1):
h = self.convs[ell](g, h)
h = F.relu(h) 0.75

h = self.convs[-1](g, h) 0 5000 10000 15000 20000
return h Iters

Motivation

* In this paper, we aim at answering two fundamental questions:

* Q1: Does increasing depth really impair the expressive power of
GCNs?

« Q2: If GCN is expressive, then why do deep GCNs generalize poorly?

Ql: Does increasing depth really impair the expressive power
of GCNs?

* Over-smoothing [1] : a phenomenon where all node embeddings
converge to a single vector after applying multiple graph
convolution operations to the node features

Intra- and inter-class distance

0.025 A

0.020 A

0.015 A

0.010 A

0.005 A

0.000 A

H® = LH¢-D HO =X

Intra- and inter-class distance / Num of layers

—— SGC: Intra-class distance

SGC: Inter-class distance

—— SGC: Inter-class distance - Intra-class distance

0

1 2 3 4 5 6 7 8 9 10
Num of layers

Intra- and inter-class distance

0.025 A

0.020 A

0.015 A

0.010 A

o
o
S
(0]

0.000 A

H® = G(LH({)“l)W({))), HO =X

Intra- and inter-class distance / Num of layers

—— GCN: Intra-class distance
GCN: Inter-class distance
—— GCN: Inter-class distance - Intra-class distance

o 1 2 3 4 5 6 7 8 9 10
Num of layers
[1] Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into
graph convolutional networks for semi-supervised learning." Thirty-
Second AAAI conference on artificial intelligence. 2018.

Ql: Does increasing depth really impair the expressive power
of GCNs?

* [2] takes non-linearity and weight matrices into consideration.

 Notations:

» Expressive power d(H®) as the distance of node embeddings H® to
a subspace M that only has node degree information.

 1; asthe second largest eigenvalue of Laplacian, 1;, as the largest
singular value of weight matrices

» They show d(H®) < (A4, 4y)! dpe (H®), i.e., the expressive
power will be exponentially decreasing (if A, 1,, < 1) or
increasing (if A, A,, > 1) as the number of layers increases.

[2] Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially
Lose Expressive Power for Node Classification." International Conference
on Learning Representations. 2019.

Ql: Does increasing depth really impair the expressive power
of GCNs?

« However, the above assumption (i.e., 1, 4,, < 1) not always
hold.

* For example,
« Let assume weight matrices W) € R%-1%4 ig initialized by uniform
distribution N (0,/1/d,_4).
By the Gordon’s theorem for Gaussian matrices, we know that the
expected largest singular value is bounded by E[Ay,] < 1+ \/d,/dp_;.

e This also hold for other initializations.

 Besides, since real-world graphs are sparse, A, is close to 1.
* Cora A;=0.9964, Citeseer 1;=0.9987, PubMed 1, =0.9905

[2] Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially
Lose Expressive Power for Node Classification." International Conference
on Learning Representations. 2019.

Ql: Does increasing depth really impair the expressive power
of GCNs?

 Besides, we empirically test on real-world dataset

GCN: du(H?) / Num of layers GCN: A(W®) / Num of layers
1.161
— Before training — Before training
| 1.14
£ 10 .
E i ~
S S = 1.10-
0- 1.08
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9
Num of layers Num of layers
GCN: dy(H®) / Num of layers GCN: A(W®) / Num of layers
5000 After training 3.0 After training
—~ 40001 R 2.8
3 3000+ $ 2.61
5 2000+ < 2.4
1000 - 2.2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9

Num of layers Num of layers

Ql: Does increasing depth really impair the expressive power
of GCNs?

* Deeper GCNs have stronger expressive power than the shallow
GCNs.
* [3] shows an appropriately trained GCNs is as expressive as 1-ML test

« An L-layer GCN can encode any different computation tree into
different representations.

« Then, we can characterize the expressiveness of L-layer GCN by the
number of computation graphs it can encode

Theorem 1. Suppose T is a computation tree with binary node features and node degree at least d.
Then the richness of the output of L-GCN defined on T* is at least |L-GCN(T*Y)| > 2(d — 1)+~

[3] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-
order graph neural networks." Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 33. No. 01. 2019.

Ql: Does increasing depth really impair the expressive power
of GCNs?

 Besides, we provide global convergence of GCNs

Theorem 2. Let 0, = {Wée) € Rde—1xde}\Hl be the model parameter at the t-th iteration and
using square loss £(0) = $|HEWUEFD _ Y12 H® = o(LHY"DW®) as objective function.
Then, under the condition that d;, > N we can obtain L(01) < e if T > C(L)log(L(0y)/¢€), where
€ is the desired error and C'(L) is a function of GCN depth L that grows as GCN becomes deeper.

* It is still unclear why a deeper GCN has worse performance than
a shallow GCN during the evaluation phase.

Q2 . If GCN is expressive, why then deep GCNs generalize
poorly?

» To answer this question, we provide a different view by
analyzing the impact of GCN structures on the generalization.

» We study the generalization ability of GCNs via transductive
uniform stability:

« difference between the training and testing errors for the random
partition of a full dataset into training and testing sets.

* Interesting observation:

 Existing methods that originally designed to alleviate the over-
smoothing issue (e.g., SGC, APPNP, GCNII, DropEdge, PairNorm) all
enjoys a better generalization power than classical GCN.

Q2 . If GCN is expressive, then Why do deep GCNs generalize
poorly?

* For example, DropEdge is hurting the training accuracy (i.e., not
alleviating over-smoothing) but reducing the generalization gap

Generalization gap / Iters

—— GCN (L=4)
81 DropEdge (L=4, keep ratio=0.9)
—— DropEdge (L=4, keep ratio=0.7)
5 —— DropEdge (L=4, keep ratio=0.5)
2 6
o
=
o
=]
©
N 4 4
©
[]
C
&
2 .
o -
0 100 200 300 400 500
Iters
Train accuracy / Iters
1.0 1
0.8 1
2 0.6 A
o
@
s
w
0.4
—— GCN (L=4)
02 DropEdge (L=4, keep ratio=0.9)
. / —— DropEdge (L=4, keep ratio=0.7)
—— DropEdge (L=4, keep ratio=0.5)
0 100 200 300 400 500

Iters

Generalization gap / Iters

L0
—— GCN (L=5)
DropEdge (L=5, keep ratio=0.9)
8 1 —— DropEdge (L=5, keep ratio=0.7)
o —— DropEdge (L=5, keep ratio=0.5)
o
@
c 61
o
¥=
©
N
5 4
[
c
[
(U]
2 -
0 -
0 100 200 300 400 500
Iters
Train accuracy / Iters
1.0 A
0.8 1
L 0.6 1
o
(9]
"
s
w
0.4 4
—— GCN (L=5)
024 DropEdge (L=5, keep ratio=0.9)
' —— DropEdge (L=5, keep ratio=0.7)
—— DropEdge (L=5, keep ratio=0.5)
0 100 200 300 400 500

Iters

Fl-score

Generalization error

Generalization gap / Iters

—— DropEdge (L=6, keep ratio=0.7)
—— DropEdge (L=6, keep ratio=0.5)

| — GCN (L=6)

DropEdge (L=6, keep ratio=0.9)

o4

100 200 300 400

Iters

Train accuracy / lters

500

1.0

0.8 1

0.6

0.4 1

0.2

GCN (L=6)

DropEdge (L=6, keep ratio=0.9)
DropEdge (L=6, keep ratio=0.7)
DropEdge (L=6, keep ratio=0.5)

o4

100 200 300 400

Iters

500

Q2 . If GCN is expressive, then why do deep GCNs generalize
poorly?

* For example, PairNorm is hurting the training accuracy (i.e., not
alleviating over-smoothing) but reducing the generalization gap

Fl-score

Generalization gap / Iters

Generalization error

—— GCN (L=4)

PairNorm (L=4, rescale=0.1)
—— PairNorm (L=4, rescale=1.0)
—— PairNorm (L=4, rescale=10.0)

0 100 200 300 400 500

Iters

Train accuracy / lters

1.0 1

0.8 1

0.6 1

0.4

0.2

—— GCN (L=4)

PairNorm (L=4, rescale=0.1)
—— PairNorm (L=4, rescale=1.0)
—— PairNorm (L=4, rescale=10.0)

0 100 200 300 400 500

Iters

Generalization error

Fl-score

Generalization gap / lters

g4 — GCN (L=5)
PairNorm (L=5, rescale=0.1)
—— PairNorm (L=5, rescale=1.0)
6 —— PairNorm (L=5, rescale=10.0)
4 B
2 B
0 B
0 100 200 300 400 500
Iters
Train accuracy / Iters
1.0 1
0.8 1
0.6 1
0.4 A
—— GCN (L=5)
PairNorm (L=5, rescale=0.1)
0.2 —— PairNorm (L=5, rescale=1.0)
—— PairNorm (L=5, rescale=10.0)
0 100 200 300 400 500

Iters

Generalization error

Fl-score

Generalization gap / Iters

T — GCN (L=6)

PairNorm (L=6, rescale=0.1)
—— PairNorm (L=6, rescale=1.0)
—— PairNorm (L=6, rescale=10.0)

0 100 200 300 400 500
Iters

Train accuracy / Iters

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

—— GCN (L=6)

PairNorm (L=6, rescale=0.1)
—— PairNorm (L=6, rescale=1.0)
—— PairNorm (L=6, rescale=10.0)

——

100 200 300 400 500

o4

Iters

Q2 . If GCN is expressive, then why do deep GCNs generalize
poorly?

 Informal statement on generalization result

Theorem 4 (Informal). We say model is e-uniformly stable with ¢ = % Z:{:l(l +nLs)t—t
where the result of py, Gy, Ly are summarized in Table |, and other related constants as

BS = (1-a) Y, (aVd) ! + (aVd)*, Bf = BB, + (1 - B),

1
By =max {B((1 - o)L+ aVd),(1 - a)LB} + 1}. =

Table 1: Comparison of uniform stability constant e of GCN variants, where O(-) is used to hide
constants that shared between all bounds.
prand Gy Ly C1 and Cs
(CLECy) O(CECL((L+2)CECy + 2)) C, = max{1,VdB,}, Co = Vd(1 + B,)
(CLCy) O(CECy((L+2)CECs +2)) Cy =1+ +VdB,, Cy =Vd(1+ B,)
(01) @ Cl (0102>) Cl = Bg‘Bx, 02 = max{l, Bw}
(BCECy) O(aBCECy((@BL+2)CFCo +28)) Cr = max{l,aVdBS}, Co =Vd+ By[B,
((C

) o

€GCN @
€ResGCN @
€APPNP O

O

€GCNII

(Cng)) Cl = (\/E)LBQC,CQ = maX{l,Bw}

epcen . O

Proposed GNN architecture

» Based on our generalization analysis, we propose Decoupled
GCN, with the following forward propagation rule.

* a,, 3, are trainable parameters
« P = D /2AD~/2 and P stands for P to the power of ¢

L
Z =Y afPX), f9X)=PX(BWY+(1-p5)0)
/=1

Generalization error

Fl-score

Empirical validation

 Validate the correctness of the theoretical results on synthetic

dataset

Generalization error / Iterations

o
wn
L

o
N
L

o
W
L

o
N
N

=3
S
\

o
<)
L

—— GCN (L=4)
—— ResGCN (L=4)
—— GCNII (L=4)
APPNP (L=4)
DGCN (L=4)

0 25 50 75 100 125 150 175 200

Iterations

1.0 1

o
©
L

o
©
)

o
N
L

o
o
L

o
w»
L

GCN (L=4): Train
—== GCN (L=4): Valid
—— ResGCN (L=4): Train
—~== ResGCN (L=4): Valid
—— GCNII (L=4): Train
—== GCNII (L=4): Valid
—— APPNP (L=4): Train
—=- APPNP (L=4): Valid
—— DGCN (L=4): Train
—=- DGCN (L=4): Valid

0 25 50 75 100 125 150 175 200

Iterations

Generalization error

Fl-score

Generalization error / Iterations

0.8 1

o
o
L

0.4 1

0.2 1

0.0 1

GCN (L=6)
ResGCN (L=6)
GCNII (L=6)
APPNP (L=6)
DGCN (L=6)

25 50 75 100 125 150 175 200

Fl-score / Iterations

1.0

0.9 1

0.8 1

0.7 1

0.6

0.5 1

0.4 4

—SSZZZeecoR==Ezo-

—— GCN (L=6): Train
—-=- GCN (L=6): Valid
~——— ResGCN (L=6): Train
—=- ResGCN (L=6): Valid
—— GCNII (L=6): Train
—== GCNII (L=6): Valid
—— APPNP (L=6): Train
—==- APPNP (L=6): Valid
—— DGCN (L=6): Train
—-=- DGCN (L=6): Valid

25 50 75 100 125 150 175 200
Iterations

Generalization error

Fl-score

Generalization error / Iterations

0.8 1

o
o
L

0.4 4

0.2

0.0 1

—— GCN (L=8)
—— ResGCN (L=8)
—— GCNII (L=8)
—— APPNP (L=8)
—— DGCN (L=8)

25

50 75 100 125 150 175 200
Iterations

1.0

0.91

0.8

0.7 1

0.6

0.5 1

0.4 1

GCN (L=8): Train
GCN (L=8): Valid
ResGCN (L=8): Train
ResGCN (L=8): Valid
GCNII (L=8): Train
GCNII (L=8): Valid
APPNP (L=8): Train
APPNP (L=8): Valid
DGCN (L=8): Train
—=- DGCN (L=8): Valid

50 75 100 125 150 175 200
Iterations

Empirical validation

e Validate the effectiveness of our model on real-world dataset

Table 2: Comparison of F1-score on OGB dataset.

% Products Proteins Arvix

GCN 75.39 + 0.21 71.66 £20.48 71.56 £0.19
ResGCN 75.53 £ 0.12 74.50 £0.41 72.56 £0.31
APPNP 66.35 £+ 0.10 71.78 £0.29 68.02 £0.55
GCNII 71.93+0.357 75.60 £ 0.47 72.57 4+ 0.23¢
DGCN 76.09 £+ 0.29 75.454+0.24 72.63 £0.12

Table 3: Comparison of Fl-score on OGB-Arxiv dataset for different number of layers

Model

(0

2 Layers

4 Layers

8 Layers

12 Layers

16 Layers

GCN
ResGCN
GCNII
GCNII
GCNII
APPNP
APPNP
DGCN

0.9
0.8
0.5
0.9
0.8

71.02% + 0.14
70.66% =+ 0.48
71.35% £ 0.21
71.14% + 0.27
70.54% + 0.30
67.38% £ 0.34
66.71% + 0.32
71.21% £ 0.25

71.56% £ 0.19
72.41% + 0.31
72.57% £ 0.23
72.32% +0.19
72.09% £ 0.25
68.02% + 0.55
68.25% =+ 0.43
72.29% £ 0.18

71.28% £ 0.33
72.56% + 0.31
72.06% £ 0.42
71.90% £ 0.41
71.92% + 0.32
66.62% + 0.48
66.40% =+ 0.89
72.39% £ 0.21

70.28% £ 0.23
72.46% + 0.23
71.31% £ 0.62
71.21% + 0.23
71.24% + 0.47
67.43% =+ 0.50
66.51% =+ 2.09

72.63% £+ 0.12

69.37% =+ 0.46
72.11% + 0.28
69.99% =+ 0.80
70.56% £ 0.72
71.02% £ 0.58
67.42% + 1.00
66.56% =+ 0.74
72.41% £ 0.07

