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Abstract

Graph Convolutional Networks (GCNs) are known to suffer from performance
degradation as the number of layers increases, which is usually attributed to over-
smoothing. Despite the apparent consensus, we observe that there exists a discrep-
ancy between the theoretical understanding of over-smoothing and the practical
capabilities of GCNs. Specifically, we argue that over-smoothing does not nec-
essarily happen in practice, a deeper model is provable expressive, can converge
to global optimal with linear convergence rate, and achieve very high training
accuracy as long as properly trained. Despite being capable of achieving high
training accuracy, empirical results shows that the deeper models generalize poorly
on the testing set and existing theoretical understanding of such behavior remains
elusive. To achieve better understanding, we carefully analyzing the generalization

capability of GCNs, we show that the training strategies to achieve high training
accuracy significantly deteriorate the generalization capability of GCNs. Motivated
by these findings, we propose a decoupled structure for GCNs that detaches weight
matrices from feature propagation to preserve the expressive power and ensure
good generalization performance. We conduct empirical evaluations on various
synthetic and real-world datasets to validate the correctness of our theory.

1 Introduction

In recent years, Graph Convolutional Networks (GCNs) have achieved state-of-the-art performance
in dealing with graph-structured applications, including social networks [28, 21, 49, 11, 43], traffic
prediction [9, 44, 33, 30], knowledge graphs [50, 51, 42], drug reaction [13, 15] and recommendation
system [2, 58]. Despite the success of GCNs, applying a shallow GCN model that only uses the
information of a very limited neighborhood on a large sparse graph has shown to be not effective [23,
6, 19, 8, 45]. As a result, a deeper GCN model would be desirable to reach and aggregate information
from farther neighbors. The inefficiency of shallow GCNs is exacerbated even further when the
labeled nodes compared to graph size is negligible, as a shallow GCN cannot sufficiently propagate
the label information to the entire graph with only a few available labels [34].

Although a deeper GCN is preferred to perceive more graph structure information, unlike traditional
deep neural networks, it has been pointed out that deeper GCNs potentially suffer from over-
smoothing [34, 40, 26, 4, 56], vanishing/exploding gradients [32], over-squashing [1], and training
difficulties [60, 37], which significantly affect the performance of GCNs as the depth increases.
Among these, the most widely accepted reason is “over-smoothing”, which is referred to as a
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Motivation

• Graph neural networks have achieved state-of-the-art 
performance in many graph-structured applications.
• Existing GNNs are limited to very shallow structures because 

GNNs suffer from performance degradation issue as the number 
of layers increases.
• The conventional wisdom is that adding the number of layers 

cause over-smoothing.
• We observe that there exists a discrepancy between the 

theoretical understanding of the inherent capabilities of GNN 
and their practical performance.



Example code

Motivation

• Experiment observations



Motivation

• In this paper, we aim at answering two fundamental questions:
• Q1: Does increasing depth really impair the expressive power of 

GCNs?
• Q2: If GCN is expressive, then why do deep GCNs generalize poorly?



Q1: Does increasing depth really impair the expressive power 
of GCNs?

• Over-smoothing [1] : a phenomenon where all node embeddings 
converge to a single vector after applying multiple graph 
convolution operations to the node features

𝐇(ℓ) = 𝐋𝐇(ℓ$%), 𝐇(&) = 𝐗 𝐇(ℓ) = 𝜎(𝐋𝐇 ℓ$% 𝐖(ℓ)), 𝐇(&) = 𝐗

[1] Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into 
graph convolutional networks for semi-supervised learning." Thirty-
Second AAAI conference on artificial intelligence. 2018.



Q1: Does increasing depth really impair the expressive power 
of GCNs?

• [2] takes non-linearity and weight matrices into consideration.
• Notations:
• Expressive power 𝑑ℳ(𝐇(ℓ)) as the distance of node embeddings 𝐇(ℓ) to 

a subspace ℳ that only has node degree information.
• 𝜆, as the second largest eigenvalue of Laplacian, 𝜆- as  the largest 

singular value of weight matrices
• They show 𝑑ℳ 𝐇 ℓ ≤ 𝜆#𝜆$ ℓ 𝑑ℳ 𝐇 % , i.e., the expressive 

power will be exponentially decreasing (if 𝜆#𝜆$ < 1) or 
increasing (if 𝜆#𝜆$ > 1) as the number of layers increases.

[2] Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially 
Lose Expressive Power for Node Classification." International Conference 
on Learning Representations. 2019.



Q1: Does increasing depth really impair the expressive power 
of GCNs?

• However, the above assumption (i.e., 𝜆#𝜆$ < 1) not always 
hold.
• For example, 
• Let assume weight matrices 𝑊(ℓ) ∈ ℝ.ℓ"#×.ℓ is initialized by uniform 

distribution 𝒩(0, 1/𝑑ℓ01). 
• By the Gordon’s theorem for Gaussian matrices, we know that the 

expected largest singular value is bounded by 𝔼 𝜆- ≤ 1 + 𝑑ℓ/𝑑ℓ01.
• This also hold for other initializations.

• Besides, since real-world graphs are sparse, 𝜆#is close to 1. 
• Cora 𝜆,=0.9964, Citeseer 𝜆,=0.9987, PubMed 𝜆,=0.9905 

[2] Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially 
Lose Expressive Power for Node Classification." International Conference 
on Learning Representations. 2019.



Q1: Does increasing depth really impair the expressive power 
of GCNs?

• Besides, we empirically test on real-world dataset



Q1: Does increasing depth really impair the expressive power 
of GCNs?

• Deeper GCNs have stronger expressive power than the shallow 
GCNs.
• [3] shows an appropriately trained GCNs is as expressive as 1-ML test
• An 𝐿-layer GCN can encode any different computation tree into 

different representations.
• Then, we can characterize the expressiveness of 𝐿-layer GCN by the 

number of computation graphs it can encode

[3] Morris, Christopher, et al. "Weisfeiler and leman go neural: Higher-
order graph neural networks." Proceedings of the AAAI Conference on 
Artificial Intelligence. Vol. 33. No. 01. 2019.

Exponentially growing expressieness without strong assumptions. Indeed, we argue that deeper

GCNs have stronger expressive power than the shallow GCNs. To prove this, we employ the connec-
tion between WL test1 [31] and GCNs. Recently, [38] shows that GCNs have the same expressiveness
as the WL-test for graph isomorphism if they are appropriately trained, i.e., a properly trained
L-layer GCN computes different node representations for two nodes if their L-layer computation tree

(Definition 1) have different structure or different features on the corresponding nodes. Since L-GCN
can encode any different computation tree into different representations, it is natural to characterize
the expressiveness of L-GCN by the number of computation graph it can encode.
Theorem 1. Suppose T

L
is a computation tree with binary node features and node degree at least d.

Then the richness of the output of L-GCN defined on T
L

is at least |L-GCN(T L)| � 2(d� 1)L�1
.

The proof is defered to Appendix C. The above theorem implies that the richness of L-GCN grows at
least exponentially with respect to the number of layers.

Comparison of expressiveness metrics. Although distance-based expressiveness metric [40, 26] is
strong than WL-based metric in the sense that node embeddings can be distinct but close to each other,
the distance-based metric requires explicit assumptions on the GCN structure, weight matrices, and
graph structures comparing to the WL-based metric, which has been shown that are not likely hold.
On the other hand, WL-based metric has been widely used in characterizing the expressive power of
GCNs in graph-level task [38, 36, 7, 5]. More details are deferred to related works (Section 2).

Although expressive, it is still unclear why the deeper GCN requires more training iterations to
achieve small training error and reach the properly trained status. To understand this, we show in
Theorem 2 that under assumptions on the width of the final layer, the deeper GCN can converge to
its global optimal with linear convergence rate. Besides, more training iterations are required for a
deeper model to achieve the same training error than the shallow model.

Theorem 2. Let ✓t = {W
(`)
t 2 Rd`�1⇥d`}

L+1
`=1 be the model parameter at the t-th iteration and

using square loss L(✓) = 1
2kH

(L)
W

(L+1)
�Yk

2
F, H

(`) = �(LH(`�1)
W

(`)) as objective function.

Then, under the condition that dL � N we can obtain L(✓T )  ✏ if T � C(L) log(L(✓0)/✏), where

✏ is the desired error and C(L) is a function of GCN depth L that grows as GCN becomes deeper.

A formal statement of Theorem 2 and its proof are deferred to Appendix D. Besides, gradient
stability also provides an alternative way of empirically understanding why deeper GCN requires
more iterations: Deeper neural networks are prone to exploding/vanishing gradient, which results
in a very noisy gradient and requires small learning rate to stabilize the training. This issue can be
significantly alleviated by adding skip-connections (Appendix E.5). When training with adaptive
learning rate algorithm, such as Adam [27]2, noisy gradient will result in a much smaller update on
current model comparing to a stabilized gradient, therefore more training iterations.

5 A different view from generalization

In the previous section, we provided evidences that a well-trained deep GCN is at least as powerful as
a shallow one. However, it is still unclear why a deeper GCN has worse performance than a shallow
GCN during the evaluation phase. To answer this question, we provide a different view by analyzing
the impact of GCN structures on the generalization.

Transductive uniform stability. In the following, we study the generalization ability of GCNs via
transductive uniform stability [16], where the generalization gap is defined as the difference between
the training and testing errors for the random partition of a full dataset into training and testing sets.
Transductive uniform stability is defined under the notation that the output of a classifier does not
change much if the input is perturbed a bit, which is an extension of uniform stability [3] from the
inductive to the transductive setting. The previous analysis on the uniform stability of GCNs [48]

1WL test is a recursive algorithm where the label of a node depends on its own label and neighbors from the
previous iterations, i.e., c(`)i = Hash(c(`�1)

i , {c(`�1)
j |j 2 N (i)}), where Hash(·) bijectively maps the a set of

values to a unique value that has not been used in the previous iterations. After L-iterations, the WL test will
assign two nodes with a different label if the L-hop neighborhood of two nodes are non-isomorphic.

2In the Adam optimizer, the contribution of bias correction of moments varies exponentially over epochs
completed. Although the learning rate hyper-parameter is a constant, the contribution of gradients to updated
weight varies over epochs, hence adaptive. Please refer to the Chapter 8.5 of [20] for more details.

5



Q1: Does increasing depth really impair the expressive power 
of GCNs?

• Besides, we provide global convergence of GCNs

• It is still unclear why a deeper GCN has worse performance than 
a shallow GCN during the evaluation phase.
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Q2: If GCN is expressive, why then deep GCNs generalize 
poorly?

• To answer this question, we provide a different view by 
analyzing the impact of GCN structures on the generalization.
• We study the generalization ability of GCNs via transductive 

uniform stability:
• difference between the training and testing errors for the random 

partition of a full dataset into training and testing sets. 
• Interesting observation: 
• Existing methods that originally designed to alleviate the over-

smoothing issue (e.g., SGC, APPNP, GCNII, DropEdge, PairNorm) all 
enjoys a better generalization power than classical GCN.



Q2: If GCN is expressive, then Why do deep GCNs generalize 
poorly?

• For example, DropEdge is hurting the training accuracy (i.e., not 
alleviating over-smoothing) but reducing the generalization gap citeseer

Figure 18: Comparison of generalization error of DropEdge on Citeseer dataset. The curve stops
early at the largest training accuracy iteration.cora

Figure 19: Comparison of generalization error of PairNorm on Cora dataset. The curve stops early at
the largest training accuracy iteration.

norm upper bound in Eq. 42 is larger than GCN. Furthermore, although the largest singular value of
the weight matrices for GCNII is larger than GCN, by selecting a small enough �`, GCNII can be
less impacted by gradient instability than vanilla GCN.

E.6 Illustrating how more training leads to high training F1-score

As a compliment to Figure 1, we provide training and validation F1-score of the baseline models.
During training, we chose hidden dimension as 64, Adam optimizer with learning rate 0.001, without
any dropout or weight decay. Please note that removing dropout and weight decay is necessary
because both operations are designed to prevent neural networks from overfitting, and will hurt the
best training accuracy that a model can achieve. As shown in Figure 23 and Figure 24, all methods
can achieve high training F1-score regardless the number of layers, which indicates node embeddings
are distinguishable.

E.7 Effect of number of layers on real-word datasets

In the following, we demonstrate the effect of the number of layers and hyper-parameters on the
performance of the model on OGB Arxiv [24]. We follow the default hyper-parameter setup of GCN

30



Q2: If GCN is expressive, then why do deep GCNs generalize 
poorly?

• For example, PairNorm is hurting the training accuracy (i.e., not 
alleviating over-smoothing) but reducing the generalization gap 

Citeseer

Figure 20: Comparison of generalization error of PairNorm on Citeseer dataset. The curve stops
early at the largest training accuracy iteration.

Figure 21: Comparison of gradient norm on Cora dataset. The curve stops early at the largest training
accuracy iteration.

on the leaderboard,6 i.e., we choose hidden dimension as 128, dropout ratio as 0.5, Adam optimizer
with learning rate as 0.01, and applying batch normalization after each graph convolutional layer. As
shown in Table 3, the number of layers and the choice of hyper-parameters can largely impact the
performance of the models. Since DGCN can automatically adjust the ↵` and �` to better adapt to
the change of model depth, it achieves a comparable and more stable performance than most baseline
models.

F Generalization bound for GCN

In this section, we provide detailed proof on the generalization bound of GCN. Recall that the update
rule of GCN is defined as

H
(`) = �(LH(`�1)

W
(`)), (43)

where �(·) is the ReLU activation function. Note that although ReLU function �(x) is not differen-
tiable when x = 0, for analysis purpose we suppose the �0(0) = 0.7

6https://github.com/snap-stanford/ogb/blob/master/examples/nodeproppred/arxiv/gnn.
py. Due to the memory limitation, we choose hidden dimension as 128 instead of the default 256 hidden
dimension for all models.

7Widely used deep learning frameworks, including PyTorch and Tensorflow, also set the subgradient of
ReLU as zero when its input is zero.
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Q2: If GCN is expressive, then why do deep GCNs generalize 
poorly?

• Informal statement on generalization result

Table 1: Comparison of uniform stability constant ✏ of GCN variants, where O(·) is used to hide
constants that shared between all bounds.

⇢f and Gf Lf C1 and C2

✏GCN O(CL
1 C2) O

�
CL

1 C2

�
(L+ 2)CL

1 C2 + 2
��

C1 = max{1,
p
dBw}, C2 =

p
d(1 +Bx)

✏ResGCN O(CL
1 C2) O

�
CL

1 C2

�
(L+ 2)CL

1 C2 + 2
��

C1 = 1 +
p
dBw, C2 =

p
d(1 +Bx)

✏APPNP O(C1) O
�
C1

�
C1C2

�
+ 1

�
C1 = B↵

dBx, C2 = max{1, Bw}

✏GCNII O(�CL
1 C2) O

�
↵�CL

1 C2

�
(↵�L+ 2)CL

1 C2 + 2�
��

C1 = max{1,↵
p
dB�

w}, C2 =
p
d+B↵,�

`,d Bx

✏DGCN O(C1) O(C1(C1C2) + 1) C1 = (
p
d)LBx, C2 = max{1, Bw}

variables are, the larger the generalization gap is. We defer the formal statements and proofs to
Appendices F, G, H, I.

Theorem 4 (Informal). We say model is ✏-uniformly stable with ✏ = 2⌘⇢fGf

m

PT
t=1(1 + ⌘Lf )t�1

where the result of ⇢f , Gf , Lf are summarized in Table 1, and other related constants as

B↵
d = (1� ↵)

PL
`=1(↵

p
d)`�1 + (↵

p
d)L, B�

w = �Bw + (1� �),

B↵,�
`,d = max

�
�
�
(1� ↵)L+ ↵

p

d
�
, (1� ↵)LB�

w + 1
 
.

(1)

In the following, we provide intuitions and discussions on the generalization bound of each algorithm:

• Deep GCN requires iterations T to achieve small training error. Since the generalization bound
increases with T , more iterations significantly hurt its generalization power. Notice that our
results considers both Bw  1 and Bw > 1, where increasing model depth will not hurt the
generalization if Bw  1, and the generalization gap becomes sensitive to the model depth if
Bw > 1. Notice that Bw > 1 is more likely happens during training as we discussed in Section 4.

• ResGCN resolves the training difficulties by adds skip-connections between hidden layers.
Although it requires less training iterations T , adding skip-connections enlarge the dependency
on the number of layers L and the spectral norm of weight matrices Bw, therefore results in a
larger generalization gap and a poor generalization performance..

• APPNP alleviates the aforementioned dependency by decoupling the weight parameters and
feature propagation. As a result, its generalization gap does not significantly changes as L and
Bw increase. The optimal ↵ that minimize the generalization gap can be obtained by finding the
↵ that minimize the term B↵

d . Although APPNP can significantly reduce the generalization gap,
because a single weight matrix is shared between all layers, its expressive power is not enough
for large-scale challenging graph datasets [24].

• To gain expressiveness, GCNII proposes to add the weight matrices back and add another
hyper-parameter that explicitly control the dependency on Bw. Although GCNII achieves the
state-of-the-art performances on several graph datasets, the selection of hyper-parameter is non-
trivial comparing to APPNP because ↵,� are coupled with L,Bw, and d. In practice, [6] builds a
very deep GCNII by choosing � dynamically decreases as the number of layers and different ↵
values for different datasets.

• By property chosen hyper-parameters, we have the following order on the generalization gap
given the same training iteration T : APPNP  GCNII  GCN  ResGCN, which exactly match
our empirical evaluation on the generalization gap in Section 7 and Appendix E.

Remark 1. In the following, we provide an alternative view of DropEdge [46] and PairNorm [59]

from generalization perspective. To improve the generalization power of GCN, DropEdge randomly

drops edges in training phase, which leads to a smaller maximum node degree ds < d. PairNorm

applies normalization on intermediate node embeddings to ensure that the total pairwise feature

distances remains a constant across layers, which leads to less dependency on d and Bw. However,

since deep GCN requires significantly more iterations to achieve low training error than shallow one,

the performance of applying DropEdge and PairNorm on GCNs is still degrading as the number

of layers increases. Most importantly, our empirical results in Appendix E.3 and E.4 suggest that

applying Dropout and PairNorm is hurting the training accuracy (i.e., not alleviating over-smoothing)

but reducing the generalization gap.
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• Deep GCN requires iterations T to achieve small training error. Since the generalization bound
increases with T , more iterations significantly hurt its generalization power. Notice that our
results considers both Bw  1 and Bw > 1, where increasing model depth will not hurt the
generalization if Bw  1, and the generalization gap becomes sensitive to the model depth if
Bw > 1. Notice that Bw > 1 is more likely happens during training as we discussed in Section 4.

• ResGCN resolves the training difficulties by adds skip-connections between hidden layers.
Although it requires less training iterations T , adding skip-connections enlarge the dependency
on the number of layers L and the spectral norm of weight matrices Bw, therefore results in a
larger generalization gap and a poor generalization performance..

• APPNP alleviates the aforementioned dependency by decoupling the weight parameters and
feature propagation. As a result, its generalization gap does not significantly changes as L and
Bw increase. The optimal ↵ that minimize the generalization gap can be obtained by finding the
↵ that minimize the term B↵

d . Although APPNP can significantly reduce the generalization gap,
because a single weight matrix is shared between all layers, its expressive power is not enough
for large-scale challenging graph datasets [24].

• To gain expressiveness, GCNII proposes to add the weight matrices back and add another
hyper-parameter that explicitly control the dependency on Bw. Although GCNII achieves the
state-of-the-art performances on several graph datasets, the selection of hyper-parameter is non-
trivial comparing to APPNP because ↵,� are coupled with L,Bw, and d. In practice, [6] builds a
very deep GCNII by choosing � dynamically decreases as the number of layers and different ↵
values for different datasets.

• By property chosen hyper-parameters, we have the following order on the generalization gap
given the same training iteration T : APPNP  GCNII  GCN  ResGCN, which exactly match
our empirical evaluation on the generalization gap in Section 7 and Appendix E.

Remark 1. In the following, we provide an alternative view of DropEdge [46] and PairNorm [59]

from generalization perspective. To improve the generalization power of GCN, DropEdge randomly

drops edges in training phase, which leads to a smaller maximum node degree ds < d. PairNorm

applies normalization on intermediate node embeddings to ensure that the total pairwise feature

distances remains a constant across layers, which leads to less dependency on d and Bw. However,

since deep GCN requires significantly more iterations to achieve low training error than shallow one,

the performance of applying DropEdge and PairNorm on GCNs is still degrading as the number

of layers increases. Most importantly, our empirical results in Appendix E.3 and E.4 suggest that

applying Dropout and PairNorm is hurting the training accuracy (i.e., not alleviating over-smoothing)

but reducing the generalization gap.
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Proposed GNN architecture

• Based on our generalization analysis, we propose Decoupled 
GCN, with the following forward propagation rule.
• 𝛼ℓ, 𝛽ℓ are trainable parameters
• 𝐏 = 𝐃01/3𝐀𝐃01/3 and 𝐏ℓ stands for 𝐏 to the power of ℓ

Z =
L
∑

!=1

α!f
(!)(X), f (!)(X) = P

!
X
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Empirical validation

• Validate the correctness of the theoretical results on synthetic 
dataset

Figure 4: Comparison of generalization error on synthetic dataset. The curve early stopped at the
largest training accuracy iteration.

order on the generalization gap given the same training iteration T : APPNP  GCNII  GCN 

ResGCN, which exactly match the theoretical result in Theorem 4. More specifically, ResGCN has
the largest generalization gap due to the skip-connections, APPNP has the smallest generalization gap
by removing the weight matrices in each individual layers. GCNII achieves a good balance between
GCN and APPNP by balancing the expressive and generalization power. Finally, DGCN enjoys a
small generalization error by using the decoupled GCN structure.

Open graph benchmark dataset. As pointed out by Hu et al. [24], the traditional commonly-used
graph datasets are unable to provide a reliable evaluation due to various factors including dataset size,
leakage of node features, no consensus on data splitting. To truly evaluate the expressive and the
generalization power of existing methods, we evaluate on the open graph benchmark (OGB) dataset.
Experiment setups are based on the default setting for GCN implementation on the leaderboard. We
choose the hidden dimension as 128, learning rate as 0.01, dropout ratio as 0.5 for Arxiv dataset, and
no dropout for Products and Protein datasets. We train 300/1000/500 epochs for Products, Proteins,
and Arxiv dataset respectively. Due to limited GPU memory, the number of layers is selected as the
one with the best performance between 2 to 16 layers for Arvix dataset, 2 to 8 layers for Protein

dataset, and 2 to 4 for Products dataset. We choose ↵` from {0.9, 0.8, 0.5} for APPNP and GCNII,
and use �` = 0.5/` for GCNII, and select the setup with the best validation result for comparison.

Table 2: Comparison of F1-score on OGB dataset.
% Products Proteins Arvix
GCN 75.39± 0.21 71.66± 0.48 71.56± 0.19

ResGCN 75.53± 0.12 74.50± 0.41 72.56± 0.31

APPNP 66.35± 0.10 71.78± 0.29 68.02± 0.55

GCNII 71.93± 0.35† 75.60± 0.47 72.57± 0.23‡

DGCN 76.09± 0.29 75.45± 0.24 72.63± 0.12

As shown in Table 2, DGCN achieves a compat-
ible performance to GCNII4 without the need
of manually tuning the hyper-parameters for all
settings, and it significantly outperform APPNP
and ResGCN. Due to the space limit, the de-
tailed setups and more results can be found in
Appendix E. Notice that generalization bounds
are more valuable when comparing two models
with same training accuracy (therefore we first
show in Section 4 that deeper model can also
achieve low training error before our discussion
on generalization in Section 5). In Table 2, becasue ResGCN has no restriction on the weight
matrices, its can achieve lower training error and its test performance is mainly restricted by its
generalization error. However, because GCNII and APPNP have restriction on the weight matrices,
their performance are mainly restricted by their training error. A model with small generalization
error and no restriction on the weight (e.g., DGCN) is preferred as it has higher potential to reach a
better test accuracy by reducing its training error.

4† GCNII underfits with the default hyper-parameters. ‡ GCNII achieves 72.74 ± 0.16 by using hidden
dimension as 256 and a different design of graph convolution layer. Refer here for details.
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Empirical validation

• Validate the effectiveness of our model on real-world dataset

Figure 4: Comparison of generalization error on synthetic dataset. The curve early stopped at the
largest training accuracy iteration.

order on the generalization gap given the same training iteration T : APPNP  GCNII  GCN 

ResGCN, which exactly match the theoretical result in Theorem 4. More specifically, ResGCN has
the largest generalization gap due to the skip-connections, APPNP has the smallest generalization gap
by removing the weight matrices in each individual layers. GCNII achieves a good balance between
GCN and APPNP by balancing the expressive and generalization power. Finally, DGCN enjoys a
small generalization error by using the decoupled GCN structure.

Open graph benchmark dataset. As pointed out by Hu et al. [24], the traditional commonly-used
graph datasets are unable to provide a reliable evaluation due to various factors including dataset size,
leakage of node features, no consensus on data splitting. To truly evaluate the expressive and the
generalization power of existing methods, we evaluate on the open graph benchmark (OGB) dataset.
Experiment setups are based on the default setting for GCN implementation on the leaderboard. We
choose the hidden dimension as 128, learning rate as 0.01, dropout ratio as 0.5 for Arxiv dataset, and
no dropout for Products and Protein datasets. We train 300/1000/500 epochs for Products, Proteins,
and Arxiv dataset respectively. Due to limited GPU memory, the number of layers is selected as the
one with the best performance between 2 to 16 layers for Arvix dataset, 2 to 8 layers for Protein

dataset, and 2 to 4 for Products dataset. We choose ↵` from {0.9, 0.8, 0.5} for APPNP and GCNII,
and use �` = 0.5/` for GCNII, and select the setup with the best validation result for comparison.

Table 2: Comparison of F1-score on OGB dataset.
% Products Proteins Arvix
GCN 75.39± 0.21 71.66± 0.48 71.56± 0.19

ResGCN 75.53± 0.12 74.50± 0.41 72.56± 0.31

APPNP 66.35± 0.10 71.78± 0.29 68.02± 0.55

GCNII 71.93± 0.35† 75.60± 0.47 72.57± 0.23‡

DGCN 76.09± 0.29 75.45± 0.24 72.63± 0.12

As shown in Table 2, DGCN achieves a compat-
ible performance to GCNII4 without the need
of manually tuning the hyper-parameters for all
settings, and it significantly outperform APPNP
and ResGCN. Due to the space limit, the de-
tailed setups and more results can be found in
Appendix E. Notice that generalization bounds
are more valuable when comparing two models
with same training accuracy (therefore we first
show in Section 4 that deeper model can also
achieve low training error before our discussion
on generalization in Section 5). In Table 2, becasue ResGCN has no restriction on the weight
matrices, its can achieve lower training error and its test performance is mainly restricted by its
generalization error. However, because GCNII and APPNP have restriction on the weight matrices,
their performance are mainly restricted by their training error. A model with small generalization
error and no restriction on the weight (e.g., DGCN) is preferred as it has higher potential to reach a
better test accuracy by reducing its training error.

4† GCNII underfits with the default hyper-parameters. ‡ GCNII achieves 72.74 ± 0.16 by using hidden
dimension as 256 and a different design of graph convolution layer. Refer here for details.
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Figure 24: Comparison of training F1-score and number of iterations on Citeseer dataset.

Table 3: Comparison of F1-score on OGB-Arxiv dataset for different number of layers

Model ↵ 2 Layers 4 Layers 8 Layers 12 Layers 16 Layers
GCN � 71.02%± 0.14 71.56%± 0.19 71.28%± 0.33 70.28%± 0.23 69.37%± 0.46
ResGCN � 70.66%± 0.48 72.41%± 0.31 72.56%± 0.31 72.46%± 0.23 72.11%± 0.28
GCNII 0.9 71.35%± 0.21 72.57%± 0.23 72.06%± 0.42 71.31%± 0.62 69.99%± 0.80
GCNII 0.8 71.14%± 0.27 72.32%± 0.19 71.90%± 0.41 71.21%± 0.23 70.56%± 0.72
GCNII 0.5 70.54%± 0.30 72.09%± 0.25 71.92%± 0.32 71.24%± 0.47 71.02%± 0.58
APPNP 0.9 67.38%± 0.34 68.02%± 0.55 66.62%± 0.48 67.43%± 0.50 67.42%± 1.00
APPNP 0.8 66.71%± 0.32 68.25%± 0.43 66.40%± 0.89 66.51%± 2.09 66.56%± 0.74
DGCN � 71.21%± 0.25 72.29%± 0.18 72.39%± 0.21 72.63%± 0.12 72.41%± 0.07

training and testing partitions, we have

Ru(f)  R
�
m(f) +

2

�
O

⇣
✏
p
Q ln(��1)

⌘
+O

⇣ ln(��1)
p
Q

⌘
.

Then, in Lemma 4, we derive the uniform stability constant for GCN, i.e., ✏GCN.

Lemma 4. The uniform stability constant for GCN is computed as ✏GCN =
2⌘⇢fGf

m

PT
t=1(1+⌘LF )t�1

where

⇢f = CL
1 C2, Gf =

2

�
(L+ 1)CL

1 C2, Lf =
2

�
(L+ 1)CL

1 C2

⇣
(L+ 2)CL

1 C2 + 2
⌘
,

C1 = max{1,
p

dBw}, C2 =
p

d(1 +Bx).

(45)

By plugging the result in Lemma 4 back to Theorem 8, we establish the generalization bound for
GCN.

The key idea of the proof is to decompose the change of the GCN output into two terms (in Lemma 5)
which depend on

• (Lemma 6) The maximum change of node embeddings, i.e., �h(`)
max = maxi k[H(`)

�

H̃
(`)]i,:k2,

• (Lemma 7) The maximum node embeddings, i.e., h(`)
max = maxi k[H(`)]i,:k2.

Lemma 5. Let f(h(L)
i ) = �̃(v>

h
(L)
i ), f̃(h̃(L)

i ) = �̃(ṽ>
h̃
(L)
i ) denote the prediction of node i using

parameters ✓ = {W
(1), . . . ,W(L),v}, ✓̃ = {W̃

(1), . . . ,W̃(L), ṽ} (i.e., the two set of parameters
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