CSDI: Conditional score-based diffusion models for probabilistic time series imputation

Yusuke Tashiro¹²³, Jiaming Song¹, Yang Song¹, Stefano Ermon¹

- 1. Stanford University
- 2. Mitsubishi UFJ Trust Investment Technology Institute (MTEC)
- 3. Japan Digital Design

MTEC Japan Digital Design

Motivation: multivariate time series imputation

- Multivariate time series appear in many applications
 - e.g., Healthcare, finance, meteorology
- Time series data often contain missing values
 - could be harmful for downstream tasks

- Many imputation methods have been developed
 - imputation based on deep learning have shown good performance
 - use autoregressive models (e.g., RNNs)
 - still challenging to capture temporal and feature dependencies

Previous study: score-based diffusion models

Gradually converts (denoises) noise to image

- Score-based diffusion models achieved SOTA sample quality in many domains (Image, audio, graph, etc.)
 - some studies applied models to imputation tasks, but...

Previous study: imputation by score-based models

• Imputation task:

- Approach in previous studies
 - 1. Train a score-based model (for unconditional generation)
 - 2. approximate conditional distribution by using the model

Previous study: imputation by score-based models

• Approximation at step T:

- Problem: added noise can reduce information

Proposed method

- CSDI (<u>C</u>onditional <u>S</u>core-based <u>D</u>iffusion models for probabilistic time series <u>I</u>mputation)
 - explicitly utilize conditional observations \mathbf{x}_0^{co}

Model

- Extend DDPM (denoising diffusion probabilistic models, Ho et al. (2020)) to conditional
 - DDPM considers the following diffusion model

forward process:
$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) := \mathcal{N}\left(\sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I}\right)$$
 reverse process:
$$p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \pmb{\mu}_{\theta}(\mathbf{x}_t, t), \sigma_{\theta}(\mathbf{x}_t, t) \mathbf{I}).$$

$$\pmb{\mu}_{\theta}(\mathbf{x}_t, t) = \frac{1}{\alpha_t}\left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}}\pmb{\epsilon}_{\theta}(\mathbf{x}_t, t)\right), \ \sigma_{\theta}(\mathbf{x}_t, t) = \tilde{\beta}_t^{1/2}$$

$$(\alpha_t, \beta_t, \tilde{\beta}_t: \text{non-trainable scalar functions})$$

model can be trained by solving the optimization problem

$$\min_{\theta} \mathcal{L}(\theta) := \min_{\theta} \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t} || \epsilon - \epsilon_{\theta}(\mathbf{x}_t, t) ||_2^2$$
where $\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_0 + (1 - \alpha_t) \epsilon$.

Model

- Extend DDPM (denoising diffusion probabilistic models, Ho et al. (2020)) to conditional
 - CSDI considers the following diffusion model

forward process:
$$q(\mathbf{x}_t^{\mathbf{ta}} \mid \mathbf{x}_{t-1}^{\mathbf{ta}}) := \mathcal{N}\left(\sqrt{1-\beta_t}\mathbf{x}_{t-1}^{\mathbf{ta}}, \beta_t \mathbf{I}\right)$$

reverse process:
$$p_{\theta}(\mathbf{x}_{t-1}^{\mathsf{ta}} \mid \mathbf{x}_{t}^{\mathsf{ta}}, \mathbf{x}_{0}^{\mathsf{co}}) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}^{\mathsf{ta}}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}^{\mathsf{ta}}, t \mid \mathbf{x}_{0}^{\mathsf{co}}), \sigma_{\theta}(\mathbf{x}_{t}^{\mathsf{ta}}, t \mid \mathbf{x}_{0}^{\mathsf{co}})\mathbf{I}).$$

$$\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}^{\mathsf{ta}}, t \mid \mathbf{x}_{0}^{\mathsf{co}}) = \frac{1}{\alpha_{t}} \left(\mathbf{x}_{t}^{\mathsf{ta}} - \frac{\beta_{t}}{\sqrt{1 - \alpha_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}^{\mathsf{ta}}, t \mid \mathbf{x}_{0}^{\mathsf{co}}) \right), \ \sigma_{\theta}(\mathbf{x}_{t}^{\mathsf{ta}}, t \mid \mathbf{x}_{0}^{\mathsf{co}}) = \tilde{\beta}_{t}^{1/2}$$

$$(\alpha_{t}, \beta_{t}, \tilde{\beta}_{t}: \text{non-trainable scalar functions})$$

model can be trained by solving the optimization problem

$$\min_{\theta} \mathcal{L}(\theta) := \min_{\theta} \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t} ||(\epsilon - \epsilon_{\theta}(\mathbf{x}_t^{\mathsf{ta}}, t \mid \mathbf{x}_0^{\mathsf{co}}))||_2^2$$
where $\mathbf{x}_t^{\mathsf{ta}} = \sqrt{\alpha_t} \mathbf{x}_0^{\mathsf{ta}} + (1 - \alpha_t) \epsilon$.
denoising function

Training method

 Inspired by masked language modeling, we develop a self-supervised training method

Model architecture (denoising function)

 We adopt 2D attention mechanism to capture temporal and feature dependencies

× multiple times K features L length learn temporal dependency learn feature dependency C channels Feature Transformer layer Temporal Transformer layer (K, 1, C)(1, L, C)(K, L, C)(K,L,C) $\times L$ Concat $\times K$ ••• Output Split Concat Input → /split

Experiments: dataset

- 1. healthcare dataset (PhysioNet)
 - observations from ICU (35 variables for 48 hours)
 - missing pattern is random
- 2. air quality dataset
 - PM2.5 in Beijing (from 36 stations, 36 hours as one time series)
 - missing pattern is not random
 - sequential missing
 - block missing

stations

Experiment: example

- impute missing values 100 times and calculate confidence intervals
- CSDI provides reasonable probabilistic imputation
 - imputation targets (blue) are within confidence intervals (green)

Experiment: comparison with probabilistic methods

- CSDI significantly outperforms existing probabilistic methods
- CSDI outperforms imputation by unconditional score-based model

(metric: CRPS) air quality healthcare 10% missing 50% missing 90% missing 0.588(-)0.964(-)0.304(-)0.483(-)Multitask GP [31] 0.574(0.003)0.774(0.004)0.998(0.001)0.397(0.009)GP-VAE [10] 0.808(0.008)0.831(0.005)0.922(0.003)0.526(0.025)V-RIN [32] 0.360(0.007)0.671(0.007)0.135(0.001)0.458(0.008)unconditional 0.238(0.001)0.330(0.002)0.108(0.001)0.522(0.002)**CSDI** (proposed)

Experiment: comparison with deterministic methods

- We use the median of samples as a point estimate
- CSDI outperforms deterministic imputation methods

(metric: MAE)

		air quality		
	10% missing	50% missing	90% missing	
V-RIN [18]	0.271(0.001)	0.365(0.002)	0.606(0.006)	25.4(0.62)
BRITS [3]	0.284(0.001)	0.368(0.002)	0.517(0.002)	14.11(0.26)
BRITS [3] (*)	0.278			11.56
GLIMA [36] (*)	0.265			10.54
RDIS [6]	0.319(0.002)	0.419(0.002)	0.631(0.002)	22.11(0.35)
unconditional	0.326(0.008)	0.417(0.010)	0.625(0.010)	12.13(0.07)
CSDI (proposed)	0.217(0.001)	0.301(0.002)	0.481(0.003)	9.60(0.04)

Experiments: multivariate time series forecasting

- We can apply CSDI to probabilistic forecasting
 - Consider future values as missing values
 - CSDI achieves competitive performance (outperforms baselines on 3 of 5 datasets)

(metric: CRPS-sum)

	solar	electricity	traffic	taxi	wiki
GP-copula [27]	0.337(0.024)	0.024(0.002)	0.078(0.002)	0.208(0.183)	0.086(0.004)
TransMAF [25]	0.301(0.014)	0.021(0.000)	0.056(0.001)	0.179(0.002)	0.063(0.003)
TLAE [20]	0.124(0.033)	0.040(0.002)	0.069(0.001)	0.130(0.006)	0.241(0.001)
TimeGrad [24]	0.287(0.020)	0.021(0.001)	0.044(0.006)	0.114(0.020)	0.049(0.002)
CSDI (proposed)	0.298(0.004)	0.017(0.000)	0.020(0.001)	0.123(0.003)	0.047(0.003)

Summary

 CSDI utilizes conditional score-based models for probabilistic time series imputation

- Future directions
 - fast sampling
 - application to downstream tasks
 - extension to other domains