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• Multivariate time series appear in many applications
– e.g., Healthcare, finance, meteorology

• Time series data often contain missing values
– could be harmful for downstream tasks

• Many imputation methods have been developed
– imputation based on deep learning have shown good performance

• use autoregressive models (e.g., RNNs)

– still challenging to capture temporal and feature dependencies

Motivation: multivariate time series imputation
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• Gradually converts (denoises) noise to image

• Score-based diffusion models achieved SOTA sample quality 
in many domains (Image, audio, graph, etc.)
– some studies applied models to imputation tasks, but…

Previous study: score-based diffusion models
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(cf. Ho et al. (2020))

reverse process



• Imputation task:

• Approach in previous studies
1. Train a score-based model (for unconditional generation)
2. approximate conditional distribution by using the model

Previous study: imputation by score-based models
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Conditional observations 𝐱!"# Imputation targets 𝐱!$%



• Approximation at step 𝑇:

– Problem: added noise can reduce information

Previous study: imputation by score-based models
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Conditional observations 𝐱!"#

input at T 𝐱!"#

+ noise

noisy observations 𝐱$"#

𝑝$(𝐱!%&"# ∣ 𝐱!"#, 𝐱!'() …

input at T-1 𝐱!%&"#

denoise



• CSDI (Conditional Score-based Diffusion models for probabilistic time 
series Imputation)
– explicitly utilize conditional observations 𝐱!"#

Proposed method
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• Extend DDPM (denoising diffusion probabilistic models, Ho et al. (2020)) 
to conditional
– DDPM considers the following diffusion model

– model can be trained by solving the optimization problem

Model
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reverse process:

forward process:

denoising function
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• Inspired by masked language modeling, we develop a self-supervised 
training method

Training method
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conditional observations 𝐱*'(

training data

imputation targets 𝐱*"#

split

noisy targets 𝐱)"#

denoising
function
𝜖%

noise 𝜖

+

noise level 𝑡

estimate added noise

• randomly
• based on known 

missing patterns



• We adopt 2D attention mechanism to capture temporal and  
feature dependencies

Model architecture (denoising function)
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K features
L length
C channels

learn temporal dependency

× multiple times

learn feature dependency



1. healthcare dataset (PhysioNet)
– observations from ICU (35 variables for 48 hours)
– missing pattern is random 

2. air quality dataset
– PM2.5 in Beijing (from 36 stations, 36 hours as one time series)
– missing pattern is not random

• sequential missing
• block missing

Experiments: dataset
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stations



• impute missing values 100 times and calculate confidence intervals  
• CSDI provides reasonable probabilistic imputation

– imputation targets (blue)  are within confidence intervals (green) 

Experiment: example
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healthcare air quality

(red: conditional observations, blue: imputation targets)



• CSDI significantly outperforms existing probabilistic methods
• CSDI outperforms imputation by unconditional score-based 

model

Experiment: comparison with probabilistic methods
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(metric: CRPS)



• We use the median of samples as a point estimate
• CSDI outperforms deterministic imputation methods

Experiment: comparison with deterministic methods
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(metric: MAE)



• We can apply CSDI to probabilistic forecasting
– Consider future values as missing values
– CSDI achieves competitive performance (outperforms baselines on 

3 of 5 datasets)

Experiments: multivariate time series forecasting
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(metric: CRPS-sum)



• CSDI utilizes conditional score-based models for probabilistic 
time series imputation

• Future directions
– fast sampling
– application to downstream tasks
– extension to other domains

Summary
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