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LITE:
Memory Efficient Meta-Learning with Large Images
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The Problem
Meta-learning algorithms for few-shot classification are constrained to small
images (e.g. 84 x 84 pixels) during training due to memory constraints.

The Solution
LITE, which reduces training memory usage by back-propagating only a small random
subset of a task's examples.

The Benefits
1. LITE approximation is an unbiased estimate of the true gradient.

2. Greater than 12% classification accuracy gains from using larger images on a single
GPU.

3. SOTA results for meta-learners on challenging VTAB+MD and ORBIT benchmarks.
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Problem:

GPU memory limits constrain meta-learning algorithms

Forward Pass
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Backward Pass
—_——>

Summary:

The entire support set
is needed to generate
the classifier weights
before it can make a
prediction and
compute a loss.

Mini-batching is not
an option!
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Current Solutions

Solution Issue

1. Small (e.g. 84 x 84) images Classification accuracy suffers (>10% drop!1));
can’'t use 224x224 pretrained models.

2. Small (subsampled) tasks Low performance on large tasks.
3. Multiple GPUs (model parallelism) May not be available; difficult to code.

4. Checkpointing Slow; not enough memory savings.
(recompute activations on demand)
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Solution:

LITE (Large Image and Task Episodic Training)
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LITE is SOTA among Meta-Learners on VTAB+MDL1]
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LITE is SOTA on ORBIT
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Thanks for watching!

Paper

https://openreview.net/forum?id=x2pF7Tt S5u

Code

VTAB+MD: https://github.com/cambridge-mlig/LITE

ORBIT: aka.ms/orbit-code

58z UNIVERSITY OF

% CAMBRIDGE 1~ m Microsoft


https://openreview.net/forum?id=x2pF7Tt_S5u
https://github.com/cambridge-mlg/LITE
http://aka.ms/orbit-code

