

Speedy Performance Estimation for Neural Architecture Search

Binxin Ru*

Clare Lyle*

Lisa Schut

Miroslav Fil

Mark van der Wilk

Yarin Gal

Computation bottleneck of NAS

Reliable yet <u>efficient</u> estimation of generalisation performance of a proposed architecture

(Elsken et al., 2019)

Performance Estimation Methods

- Reliability: how well the estimated performance correlates with the true test performance
- Costs: costs for computing the estimates and/or collecting architecture data for surrogate training/tunining
- A <u>simple, cheap, theoretically-motivated, reliable</u> solution: Training speed estimator (TSE)

Training Speed Estimator (TSE)

 The generalisation performance of an architecture can be estimated via a simple measure of training speed, the sum of its SGD training losses over first T epochs

$$TSE = \sum_{t=1}^{T} \left[\frac{1}{B} \sum_{i=1}^{B} \ell \left(f_{\theta_{t,i}}(\mathbf{X}_i), \mathbf{y}_i \right) \right]$$

Two variants of TSE to account for unstable dynamics in very early training:

$$TSE-E = \sum_{t=T-E+1}^{T} \left[\frac{1}{B} \sum_{i=1}^{B} \ell \left(f_{\theta_{t,i}}(\mathbf{X}_i), \mathbf{y}_i \right) \right] \quad TSE-EMA = \sum_{t=1}^{T} \gamma^{T-t} \left[\frac{1}{B} \sum_{i=1}^{B} \ell \left(f_{\theta_{t,i}}(\mathbf{X}_i), \mathbf{y}_i \right) \right]$$

Only consider the most recent E epochs

Downweigh earlier training trajectory

Theoretical Motivations

- Training Speed and Generalisation
 - Train faster (fewer optimization steps) ⇔ generalize better (Hardt et al., 2016)
 - No. of steps to reach certain training loss ⇔ test performance (Jiang et al., 2020)

(Hardt et al., 2016; Jiang et al., 2021)

Theoretical Motivations

- Training Speed and Generalisation
- Bayesian Marginal Likelihood of a model $\,\mathcal{H}\,$
 - No need for validation data

$$\log P(\mathcal{D}|\mathcal{H}) = \sum_{i=1}^{n} \underbrace{\log P(\mathcal{D}_i|\mathcal{D}_{< i}, \mathcal{H})}^{\text{sum of log likelihoods}}$$

$$\sum_{i=1}^{k} \ln P(D_i|D_{< i}, \mathcal{H})$$

$$TSE = \sum_{t=1}^{T} \left[\frac{1}{B} \sum_{i=1}^{B} \underbrace{\ell\left(f_{\theta_{t,i}}(\mathbf{X}_i), \mathbf{y}_i\right)}^{\text{sum of training losses}} \right]$$

SGD training steps

Bayesian update steps

(Lyle et al., 2020)

Exp1: Rank Correlation with Generalization

- Rank correlation: between estimated ranking and true test accuracy ranking
- Consistently outperform all competing estimators on a diverse set of search spaces and image tasks, with a small fraction of training budget

Exp1: Rank Correlation with Generalization

- Rank correlation between estimator and true test accuracy
- Robust to various training set-ups on DARTS search space
 - Optimal architectures under one training protocol may not remain optimal in another

Exp2: Improve Query-based NAS

- Evaluate architecture performance at each query using TSE-EMA (T=10) vs
 early-stopped val. Accuracy Val Acc(T=10) and fully-trained val. accuracy Val Acc(T=200)
- Significantly reduce search costs for different query-based search strategies

(Ying et al., 2019)

Exp2: Improve One-shot NAS

Replace validation accuracy with TSE score for subnetwork evaluation

Evaluate each subnetwork by inherit *corresponding* super-net weights → compute valid. accuracy

(Shi et al., 2020)

Exp2: Improve One-shot NAS

Replace validation accuracy with TSE score for subnetwork evaluation

Evaluate each subnetwork by inherit corresponding super-net weights

- → compute valid. accuracy
- → compute TSE by train for B additional mini-batches*

(Shi et al., 2020)

^{*} Remove the cost and need for running on validation data

Exp2: Improve One-shot NAS

- Replace valid. accuracy with TSE score for subnetwork evaluation
 - → compute TSE by train for B additional mini-batches
- Better estimate of the subnetworks' true ranking* & Lead to better top architectures on both NASBench201(NB201) and NASBench301(DARTS)
- Orthogonal to super-net training techniques (RandNAS, FairNAS, MultiPaths)

В	Estimator	Rank Correlation				Average Accuracy of Top 10 Architectures			
		NB201-CIFAR10			DARTS	NB201-CIFAR10			DARTS
		RandNAS	FairNAS	MultiPaths	RandNAS	RandNAS	FairNAS	MultiPaths	RandNAS
100	TSE Val Acc	0.70 (0.02) 0.44 (0.15)	0.84 (0.01) 0.56 (0.17)	0.83 (0.01) 0.67 (0.05)	0.30(0.04) 0.11(0.04)	92.67 (0.12 91.47 (0.31)	92.7 (0.1) 91.73 (0.21)	92.63 (0.12) 91.77 (0.78)	93.64(0.04) 93.20(0.04)
200	TSE Val Acc	0.70 (0.03) 0.41 (0.10)	0.850 (0.01) 0.56 (0.17)	0.83 (0.01) 0.53 (0.11)	0.32(0.04) 0.09(0.02)	92.70 (0.00) 91.53 (0.55)	92.77 (0.06) 92.40 (0.10)	92.73 (0.06) 92.23 (0.23)	93.55(0.04) 93.34(0.02)
300	TSE Val Acc	0.71 (0.03) 0.44 (0.04)	0.851 (0.00) 0.62 (0.08)	0.82 (0.01) 0.59 (0.71)	0.34(0.04) 0.06(0.02)	92.70 (0.00) 91.20 (0.35)	92.77 (0.06) 92.10 (0.50)	92.70 (0.00) 91.43 (0.72)	93.65(0.04) 93.31(0.02)

^{*} When training the subnetwork from scratch

Exp2: Improve Differentiable NAS

- Use the gradient of validation loss TSE to update architecture parameters
 - → Improve search performance & Mitigate overfitting to skip-connect operation
- Modified DARTS(left) and DrNAS (right)

All operations become *skip connect*

(Liu et al., 2019; Chen et al., 2021)

Summary

We propose a novel performance estimator, TSE:

Simple & Cheap

Easy to compute,
Require very small amount of training,
Model-free!

Reliable & Robust

Good rank correlation on various search spaces, image tasks, training set-ups

Theoretically-motivated

Training speed,
Bayesian marginal likelihood

General

Easily applicable to various NAS approaches, including query-based, one-shot, differentiable

- Paper link: https://arxiv.org/abs/2006.04492
- Code: https://github.com/rubinxin/TSE