Large-Scale Wasserstein Gradient Flows
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Problem Formulation: Fokker-Planck SDE

A Langevin process'
with the drift term given by the gradient
of a potential function ® : RP? — R

dX, = —VO(X,)dt + /28~ 1dW,,

s.t. Xo ~ pO é
>
Corresponding Fokker-Planck! PDE: 2
o
9 . B =
% = div(VP(x)p:) + B Apy,
s.t. po = po. =
COOI'(YI'IJ\
A,
M

LCédric Villani (2008). Optimal transport: old and new.



Wasserstein Gradient flows

Let F : Po(RP) — R. The Wasserstein gradient flow {p;}:cg, is a
continuous sequence of probability measures p; € P>(RP) which satisfies
the continuity equation

{8tﬂt -V (Ptvx%(P)) =0
pe=0 = p°

° ‘Z—JZ is called the first variation.?

Filippo Santambrogio (2016). Euclidean, Metric, and Wasserstein Gradient Flows:
an overview. arXiv: 1609.03890 [math.AP].
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Wasserstein Gradient flows

Let F : Po(RP) — R. The Wasserstein gradient flow {p;}:cg, is a
continuous sequence of probability measures p; € P>(RP) which satisfies

the continuity equation — pesit.
Oipr = =V, F(pt)

{3tptV ) (Ptvx%(ﬁ)) =0
pe=0 = p°

° ‘;—J: is called the first variation.?

e —V. (ptvx (),)( )) = sz‘F(p)
e The Fokker-Planck equation is the WGF with

the functional
Fee(p) = / ®(x)dp(x +5/ x) log p(x

\_\,_
potential energy

neg. entropy

?Filippo Santambrogio (2016). Euclidean, Metric, and Wasserstein Gradient Flows:

an overview. arXiv: 1609.03890 [math.AP].
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JKO scheme

JKO scheme is the sequence {p“}5°, C P2(RP) such that:
.1 _
Py 4= argmin W3 (pi~t, p) + 7F(p),
pEP2(RP)

2 = p° € Po(RP)

The parameter 7 € R is the discretization step.



JKO scheme

JKO scheme is the sequence {p“}°, C P>(RP) such that:

1 _
Pk« argmin “W2(pk71 p) + 7F(p), 02 = p° € Po(RP)
pEP2(RP)

Similarity to Euclidean case
{(%pt +VmFlp) =0 {X’(t) = —VF(x(1))

pr=o = p° x(0) = x € R"
@rerhrg G in (PQ(RD), Wz) Gradient flow in Euclidean space (R”, || - ||2)
The Backward Euler Scheme {x*}?°, which Fz)=a—-9§

models the Gradient flow in Euclidean space: VAF (2F 1)

xkH = xk _7VF(x!) o

T

k+1

1
& x; 7 = argmin EHX — xX|2 + 7F(x)

i !
compare with JKO! F(Yﬁ) =a



JKO scheme

JKO scheme is the sequence {p“}°, C P>(RP) such that:

1 _
Pk «— argmin “W3(p5 71 p) + 7.F(p),
pEPL(RD) 2

Y = p° € Po(RP)

(Squared) Wasserstein-2 distance between 1, v € P,(RP)
Wi = inf [ l1x = T(IBdn()
v=THu JrD
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JKO scheme

JKO scheme is the sequence {p“}°, C P>(RP) such that:

1 _
Pk« argmin ZW3(p5 71 p) + 7F(p),
pEP2(RP)

P2 = p° € Po(RP)
Theorem? Given F = Fep(p) = + 87 [ p(x) log p(x)dx
RO
and F(p°) < 400 there exists unique solution of JKO {pX}2°,. Define
pr 1 (0,+00) X R" — [0, 00) as follows:
p-(t) = pk, for t € [kr,(k +1)7),k €N

Then, as 7 ] 0: p,(t) weakly converges to the solution of the
Wasserstein gradient flow associated with F

2Richard Jordan, David Kinderlehrer, and Felix Otto (1998). “The Variational
Formulation of the Fokker-Planck Equation”. In: SIAM J. Math. Anal.



Brenier’s theorem*

Theorem* Let . be absolutely continuous. Then there exists unique f -
a.s. convex lower semicontinuous f, that the optimal T* has the form:
T*(x) = Vf(x). Therefore, in this case:

W2 (1, v / Ix = VF()Zdu(x)

Alternative formulation of JKO?3

. 1
ve= argmin TFee(Vint) + 5 [ I VoGIEdp(x)
1 €Conv(RP) s

k+1 V¢kﬁp7

3Jean-David Benamou et al. (2014). Discretization of functionals involving the
Monge-Ampére operator. arXiv: 1408.4536 [math.NAJ.

4Villani Cédric (2003). Topics in optimal transportation / Cédric Villani. eng.
Graduate studies in mathematics. American mathematical society.
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ICNN powered JKO

Consider the parametrization 1y € Conv(RP),6 € © given by ICNNs®

O [ E E =
O > =} = a
o (e} o =
> > > 5
c = =
O o o o o
o L S © =
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> 5 5 =) 5 >
a g-8he-g- - -840
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><‘ (=9 . o
~  Convexity —
Preserving Block

Typical ICNN architecture
Image source: Korotin et. al. (2019)

Each JKO optimization step reads as follows:

P el [pr(weﬁpb 4o [ we(x)n%dpi(x)}
0 T
RD

5Brandon Amos, Lei Xu, and J Zico Kolter (2017). “Input convex neural networks”.
In: Proceedings of the 34th International Conference on Machine Learning.



Stochastic Optimization for JKO via ICNNs

ICNN powered JKO

. 1
0" « arg min Fep(Viboliol) + Z/ Ix = Vo (x)[13dp5(x)
RD

Yk = o ; PETT = Viytpk

We need to optimize with respect to
Fep(Vibotpk) = + 871 [ p(x) log p(x)dx:
RD

Theorem Let p € P»(RP) - absolute continuous, T : RP — RP is a
diffeomorphism. Let x1, xo,...xy ~ p. Then

N
e 1
Fep(xin) = = ﬁ’lﬁ Z log |det VT (x,)|

n=1

is an estimator of Frp(T#p) up to constant.



Stochastic Optimization for JKO via ICNNs

Algorithm 1: Fokker-Planck JKO via ICNNs

Input : Initial measure p°, batch size N, discr. step 7 > 0;
# of steps K > 0, temperature 371, target potential V/(x);
Output: trained ICNN models {1 }K_, representing JKO steps
for k=0,1,...,K—1do
1y < basic ICNN model,
fori=1,2,... do
Sample batch Z ~ p° of size N; X <~ Vb1 0---0 Vhp(2);

W3« & quvwe(x) — x|I3;
S
Fee < & 2 V(Vie(x)) — B71% 3 log det V24 ()
xeX xeX
L EWZ + Fepi
oL .

Perform a gradient step over 6 by using 57 ;

end

Yi < Yo

end




Density estimation via ICNN powered JKO

Let g, 11, ... 1K be the convex potentials which minimize the
corresponding JKO steps, i.e.
px = Viotp®;

P = Vi1t [Vok—atf{ ... Vobotp® }] ;

By change of variable formula, given xx € R the following holds true:

K-1
“1
P (i) = p°(x0) - [ ] det V2ui()]
i=0
where xg, x1,...XK_1 are s.t. xx = VwK—l(XK—l)a Xy = V’Lﬂo(Xo)
e If we sample xx from pX we compute the density p¥(xx) on the fly!

e For arbitrary xx € RP one need to solve the sequence of convex
optimization problems:

x; = Vii_1(xi—1) <= x;_1 = arg max [(X,x,-) = w,-_l(x)}
xERD



Study: Convergence to stationary distribution

The Fokker-Planck equation with potential
Fep(p) = [ ®(x)dp(x) + B~ [ p(x)log p(x)dx converges to stationary
RD

distributio;
p(x) = Z" exp(— 5 (x))

Stationary measure Fitted measure (ours) Stationary measure Fitted measure (ours)
N ©
0 ;"‘ ’

-10 [ 10 -10 [ 10

Projection to first two PC, D = 13 Projection to first two PC, D = 32

Examples of convergence to stationary mixture of gaussians distributions



Study: Ornstein-Uhlenbeck processes

e The potential = 1(x— b)TA(x — b), A is SPD matrix
e Given p°(X) ~ N(u, ), distribution p;(x) has close-form solution
(it is also normal distribution)
0 0
g -1 g -1
3 2
22 — [pualjko] | £ 72 P = ~—— [bual ko]
— [EM] 1K - — [EM] 1K
— [EM] 10K — [EM] 10K
-3 / [EM] 50K -3 / [EM] 50K
Ours Ours
2 4 6 8 10 12 2 4 6 8 10 12
D, dimension D, dimension
SymKL true vs fitted, t = 0.5 SymKL true vs fitted, t = 0.9

Discrepancy between true and predicted marginal distributions at different timesteps



Applications: Unnormalized Posterior Sampling

Comparison with SVGD® method on Bayesian Logistic Regression task
for 9 benchmark datasets®
Accuracy Log-Likelihood
Ours [SVGD| Ours [SVGD]
covtype 0.75 0.75 -0.515  -0.515

Dataset

german 0.67 0.65 -0.6 -0.6
diabetis  0.775 0.78 -0.45 -0.46
twonorm  0.98 0.98 -0.059  -0.062
ringnorm  0.74 0.74 -0.5 -0.5

banana 0.55 0.54 -0.69 -0.69
splice 0.845 0.85 -0.36 -0.355
waveform  0.78 0.765 -0.485  -0.465
image 0.82 0.815 -0.43 -0.44

6Qiang Liu and Dilin Wang (2019). Stein Variational Gradient Descent: A General
Purpose Bayesian Inference Algorithm. arXiv: 1608.04471 [stat.ML].


https://arxiv.org/abs/1608.04471

Applications: Nonlinear filtering

e In the problem of nonlinear filtering one need to compute the
posterior distribution of nonlinear Fokker-Planck diffusion based on
noisy observations from the process

. = Lsin(2mx) + £x? (it is highly nonlinear process)

e Filtering takes ty = 9 sec. (noisy observations each 0.5 sec.)

Discrepancy comparision at t =5 sec.

|
©
n

log10SymKL
S
w o

L]
‘.
-2.0 ? .
.
25 ==

Ours [Dual JKO] [BBF] [BBF] [BBF] [BBF]
100 1K 10K 50K



Thank you!’

Large-Scale Wasserstein Gradient Flows
Modelling the Fokker-Planck equation via ICNN-powered JKO scheme.
https://arxiv.org/abs/2106.00736

> Oipr = —Vw, F(pt)

< probability mass
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https://github.com/PetrMokrov/Large-Scale-Wasserstein-Gradient-Flows

"The problem statement was developed in the framework of Skoltech-MIT NGP
program. The work was supported by Ministry of Science and Higher Education grant
No. 075-10-2021-068.
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