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Contrastive Learning

Contrastive Learning is a popular method for self-supervised representation learning.
x” and xB are two views of the same instance

z” and zB are the corresponding representations (usually normalized): z# = f4(x*), z8 = fz(x5).
One typical contrastive loss—the InfoNCE loss:
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f(-,-) is a similarity measure and could be the simple dot product.
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Contrastive Learning

Theoretical foundation: maximizing a lower bound of mutual information. E.g. the InfoNCE
loss is a tight lower bound of the mutual information of two views' representations:

ef (xi.yi)
~ £ Infonce(X, Y) (4)
i=1 Z f(xi,y;)

Other contrastive learning loss such as InfoMax, MINE are also lower bounds of mutual
information.
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Self-supervised Learning for Nodes Representation Learning

® DGl and MVGRL use InfoMax as the objective function
® GRACE/GCA uses InfoNCE loss
e BGRL adopts the structure of BYOL to avoid contrasting
Despite their empirical success, they suffer from the following limitations:
® DGI/MVGRL requires parameterized MI estimator.
® GRACE/GCA has an O(N?) complexity and is not scalable to large graphs.
® BGRL requires complex asymmetric structures and is not theoretically explainable.

To tackle these limitations, we propose a novel framework for self-supervised learning on
graphs, which is based on canonical correlation analysis.
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The simplest SSL method

Table 1: Technical comparison of self-supervised node representation learning methods. We provide
a conceptual comparison with more self-supervised methods in Appendix G. Target denotes the
comparison pair, N/G/F denotes node/graph/feature respectively. MI-Estimator: parameterized mutual
information estimator. Proj/Pred: additional (MLP) projector or predictor. Asymmetric: asymmetric
architectures such as EMA and Stop-Gradient, or two separate encoders for two branches. Neg
examples: requiring negative examples to prevent trivial solutions. Space denotes space requirement
for storing all the pairs. Our method is simple without any listed component and memory-efficient.

| Methods Target MI-Estimator Proj/Pred  Asymmetric Neg examples  Space
= | DGI [48] N-G v - - v O(N)
& | MVGRL[15] N-G v - v v O(N)
8 | GRACE [57] N-N - v - v O(N?)
2 | GCA[58] N-N - v - v O(N?)
= | BGRL [39] N-N - v v - O(N)

| CCA-SSG (Ours)  F-F - - - - 0(D?)
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Canonical Correlation Analysis

Given two random variables X € R™ and Y € R", whose covariance matrix is

Y xy = Cov(X,Y). CCA aims at seeking two vectors a € R™ and b € R" such that the
. T

correlation p = corr(a' X, b Y) a_xyb

= is maximized:
\/aTZXXa\/bTZyyb
max aTZXyb, s.t. aTZXXa = bTZyyb = 1. (5)
a?

Multi-dimensional and non-linear cases:
max Tr (Pg (xl)sz(xg)) s.t. Py (X1)Poy(X1) = Py (X2)Pa,(Xa) = 1. (6)
1,02

Soft decorrelation:

5?'92 Ldist (Po, (X1), Po,(X2)) + A (LspL (P, (X1)) + Lspr(Pe,(X2))) s (7)
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Our Method

® Input: Graph G = (X, A).

® Graph ‘augmentations: edgNe dropringN and node feature masking.
Then GA = (XA,AA) and GB = (XB,AB)

® Encoder: Graph Neural Network. Z, = fg()N(A,AA) Zg = fp(Xp, AB).

® Normalization along feature dimension: 7= Z( )’i(\}
Objective Function:
c 76l x (23241 + 2525 1| 8
o+ (232 1]+ 2525 -1 ®)

invariance term decorrelation term
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Advantages over previous methods

® No reliance on negative samples.
® No MI estimator, projector network nor asymmetric architectures.

® Better efficiency and scalability to large graphs.
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Theoretical Analysis

Some notations:
. X: the input data.

—_

2. S: the augmented data.

3. T: downstream task.

4. Zx = fp(X).

5. Zs = f(S).

6. I(A, B): mutual information.

7. I(A, B|C): conditional mutual information.
8. H(A): entropy.

9. H(A|B): conditional entropy.
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Interpretation with Entropy and Mutual Information

Assumption 1: Gaussian assumption of P(Zs|X) and P(Zs):

P(Zs|X) = P(Zs|X) = N'(ux, Xx), P(Zs) = N(p, ). (9)

We have the following propositions:
Proposition 1: In expectation, minimizing L;,, is equivalent to minimizing the entropy of Zs
conditioned on input X, i.e.,

mgin Liny = mgin H(Zs|X).

Proposition 2: Minimizing Lgec is equivalent to maximizing the entropy of Zs, i.e.,

m@in Lgec =2 max H(Zs).
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Theorem 1

Combining Proposition 1 and Proposition 2, we have the following theorem.

Theorem

By optimizing Eq (8), we maximize the mutual information between the augmented view's
embedding Zs and the input data X, and minimize the mutual information between Zs and
the view itself S, conditioned on the input data X. Formally we have

mainﬁ = mé'axl(Zs,X) and mgin 1(Zs, S|X). (10)

The proof is simple and based on the following two equations:
1) I(Zs, S|X) = H(Zs|X) and 2) I(Zs, X) = H(Zs) — H(Zs|X).

11/20



Connection with the Information Bottleneck Principle

First, let's recall the Supervised Information Bottleneck Principle.
Definition 1. The supervised IB aims at maximizing an Information Bottleneck Lagrangian:

IBsp = I(Y,Zx) — BI(X, Zx), where 5 > 0. (11)

IBs,p attempts to maximize the information between the data representation Zx and its
corresponding label Y, and concurrently minimize the information between Zx and the input
data X (i.e., exploiting compression of Zx from X). The intuition of IB principle is that Zx is
expected to contain only the information that is useful for predicting Y.
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Connection with the Information Bottleneck Principle

Apply Information Bottleneck Principle to Self-supervised Learning:

Definition 2. (Self-supervised Information Bottleneck!23). The Self-supervised IB aims at
maximizing the following Lagrangian:

IBe = I(X, Zs) — BI(S, Zs), where 3 > 0. (12)

Intuitively, ZB4 posits that a desirable representation is expected to be informative to
augmentation invariant features, and to be a maximal compressed representation of the input.

! Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. " Barlow twins: Self-supervised
learning via redundancy reduction”. ICML 2021.

2Tsai, Yao-Hung Hubert, et al. " Self-supervised learning from a multi-view perspective”. ICLR 2021.
3Federici, Marco, et al. " Learning robust representations via multi-view information bottleneck”. ICLR 2020.
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Connection with the Information Bottleneck Principle

Assume 0 < 8 < 1, then by minimizing the loss function L, the self-supervised Information
Bottleneck objective is maximized, formally:

mein L= meaxIBSS/
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Connection with the Information Bottleneck Principle

Assume 0 < B < 1, then by minimizing Eq. (8), the self-supervised Information Bottleneck
objective is maximized, formally:

méinﬁ = mgaxIBssl (13)
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Influence on Downstream Tasks

Assumption 2 (Task-relevant information and data augmentation):
All the task-relevant information is shared across the input data X and its augmentations S,
e, I(X, T)=1I(S,T)=1(X,S,T), or equivalently, /(X, T|S) = 1(S, T|X)=0.

X S

AN 7

R
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Influence on Downstream Tasks

Theorem (Task-relevant/irrelevant information)

By optimizing Eq. (8), the task-relevant information |(Zs, T) is maximized, and the
task-irrelevant information H(Zs| T) is minimized. Formally,

meinﬁ = meaxl(Zs, T) and mgin H(Zs|T). (14)
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Major experimental results

Table 2: Test accuracy on citation networks. The input column highlights the data used for training.
(X for node features, A for adjacency matrix, S for diffusion matrix, and Y for node labels).

| Methods Input Cora Citeseer Pubmed
MLP [47] XY 55.1 46.5 71.4
Supervised LP [56] AY 68.0 453 63.0
’ GCN [22] X,AY 8L.5 70.3 79.0
GAT [47] X,AY 83.0+0.7 725 £ 0.7 79.0 £ 0.3
Raw Features [48] X 479+ 0.4 493 +0.2 69.1 +0.3
DeepWalk [32] A 70.7 £ 0.6 514+£05 743+ 0.9
GAE [21] X, A 71.5+0.4 65.8 £04 721+ 0.5
Unsupvised DGI [48] X, A 82306 71.8 £0.7 76.8 £ 0.6
) ) MVGRL! [15] X, S A 83504 73.3£05 80.1 = 0.7
GRACE? [57] XA 81.9+04 71.2£05 80.6 =04
CCA-S8SG (Ours) XA 84.2+04 73.1£03 81.6 =04
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Major experimental results

Table 3: Test accuracy on co-author and co-purchase networks. We report both mean accuracy and
standard deviation. Results of baseline models are from [58].

| Methods Input Computer Photo CS Physics
Supervised GCN [22] X, AY 8651 £054 9242+022 93.03+0.31 95.65=+0.16
Supervised GAT [47] X, A)Y 86934+029 9256+035 92314024 9547+0.15
Raw Features [48] X 73.81 £0.00 7853000 90.37+£0.00 93.58+0.00
= | DeepWalk [32] A 85.68 £0.06 8944 +0.11 84.61+022 91.77+£0.15
& | DeepWalk + features X, A 86.28 £0.07 90.05+0.08 87.70+0.04 94.90 £ 0.09
*E GAE [21] X, A 8527 £0.19 91.62£0.13 90.01 £0.71 94.92 £0.07
£ | DGI [48] X, A 83.95+£047 9161 £022 92154+£0.63 94.51+£0.52
Z | MVGRL [15] X,S,A 8752+0.11 91.744+0.07 92.11+£0.12 9533 +0.03
= | GRACE! [571 X, A 8625+ 025 9215+£024 9293+0.01 9526+0.02
GCA' [58] X, A 87.85£031 9249 +0.09 93.10+£0.01 95.68 £ 0.05
CCA-SSG (Ours) X, A 88.74 £ 0.28 93.14 + 0.14 9331 +0.22 95.38 £ 0.06
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The End



