
From Canonical Correlation Analysis to

Self-supervised Graph Neural Networks

Hengrui Zhang1, Qitian Wu2, Junchi Yan2, David Wipf3, Philip S. Yu1

1 University of Illinois, Chicago
2 Shanghai Jiao Tong University

3 AWS Shanghai AI Lab

1 / 20



Contrastive Learning

Contrastive Learning is a popular method for self-supervised representation learning.
xA and xB are two views of the same instance
zA and zB are the corresponding representations (usually normalized): zA = fA(xA), zB = fB(xB).
One typical contrastive loss–the InfoNCE loss:
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L = La + Lb (3)

f (·, ·) is a similarity measure and could be the simple dot product.
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Contrastive Learning

Theoretical foundation: maximizing a lower bound of mutual information. E.g. the InfoNCE
loss is a tight lower bound of the mutual information of two views’ representations:

I (X ,Y ) ≥ E

 1

K

K∑
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K∑
j=1
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 , IInfoNCE (X ,Y ) (4)

Other contrastive learning loss such as InfoMax, MINE are also lower bounds of mutual
information.
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Self-supervised Learning for Nodes Representation Learning

• DGI and MVGRL use InfoMax as the objective function

• GRACE/GCA uses InfoNCE loss

• BGRL adopts the structure of BYOL to avoid contrasting

Despite their empirical success, they suffer from the following limitations:

• DGI/MVGRL requires parameterized MI estimator.

• GRACE/GCA has an O(N2) complexity and is not scalable to large graphs.

• BGRL requires complex asymmetric structures and is not theoretically explainable.

To tackle these limitations, we propose a novel framework for self-supervised learning on
graphs, which is based on canonical correlation analysis.
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The simplest SSL method
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Canonical Correlation Analysis

Given two random variables X ∈ Rm and Y ∈ Rn, whose covariance matrix is
ΣXY = Cov(X ,Y ). CCA aims at seeking two vectors a ∈ Rm and b ∈ Rn such that the

correlation ρ = corr(a>X , b>Y ) = a>ΣXY b√
a>ΣXX a

√
b>ΣYY b

is maximized:

max
a,b

a>ΣXY b, s.t. a>ΣXXa = b>ΣYY b = 1. (5)

Multi-dimensional and non-linear cases:

max
θ1,θ2

Tr
(
P>θ1

(X1)Pθ2(X2)
)

s.t. P>θ1
(X1)Pθ1(X1) = P>θ2

(X2)Pθ2(X2) = I . (6)

Soft decorrelation:

min
θ1,θ2

Ldist (Pθ1(X1),Pθ2(X2)) + λ (LSDL(Pθ1(X1)) + LSDL(Pθ2(X2))) , (7)
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Our Method

• Input: Graph G = (X,A).

• Graph augmentations: edge dropping and node feature masking.
Then G̃A = (X̃A, ÃA) and G̃B = (X̃B , ÃB)

• Encoder: Graph Neural Network. ZA = fθ(X̃A, ÃA), ZB = fθ(X̃B , ÃB).

• Normalization along feature dimension: Z̃ = Z−µ(Z)

σ(Z)∗
√
N

Objective Function:
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F

)
︸ ︷︷ ︸

decorrelation term

(8)
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Advantages over previous methods

• No reliance on negative samples.

• No MI estimator, projector network nor asymmetric architectures.

• Better efficiency and scalability to large graphs.
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Theoretical Analysis

Some notations:

1. X : the input data.

2. S : the augmented data.

3. T : downstream task.

4. ZX = fθ(X ).

5. ZS = fθ(S).

6. I (A,B): mutual information.

7. I (A,B|C ): conditional mutual information.

8. H(A): entropy.

9. H(A|B): conditional entropy.
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Interpretation with Entropy and Mutual Information

Assumption 1: Gaussian assumption of P(ZS |X ) and P(ZS):

P(ZS |X ) = P(ZS |X ) = N (µX ,ΣX ),P(ZS) = N (µ,Σ). (9)

We have the following propositions:
Proposition 1: In expectation, minimizing Linv is equivalent to minimizing the entropy of ZS

conditioned on input X , i.e.,
min
θ
Linv ∼= min

θ
H(ZS |X ).

Proposition 2: Minimizing Ldec is equivalent to maximizing the entropy of ZS , i.e.,

min
θ
Ldec ∼= max

θ
H(ZS).
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Theorem 1

Combining Proposition 1 and Proposition 2, we have the following theorem.

Theorem

By optimizing Eq (8), we maximize the mutual information between the augmented view’s
embedding ZS and the input data X , and minimize the mutual information between ZS and
the view itself S, conditioned on the input data X . Formally we have

min
θ
L ⇒ max

θ
I (ZS ,X ) and min

θ
I (ZS ,S |X ). (10)

The proof is simple and based on the following two equations:
1) I (ZS , S |X ) = H(ZS |X ) and 2) I (ZS ,X ) = H(ZS)− H(ZS |X ).
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Connection with the Information Bottleneck Principle

First, let’s recall the Supervised Information Bottleneck Principle.
Definition 1. The supervised IB aims at maximizing an Information Bottleneck Lagrangian:

IBsup = I (Y ,ZX )− βI (X ,ZX ), where β > 0. (11)

IBsup attempts to maximize the information between the data representation ZX and its
corresponding label Y , and concurrently minimize the information between ZX and the input
data X (i.e., exploiting compression of ZX from X ). The intuition of IB principle is that ZX is
expected to contain only the information that is useful for predicting Y .
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Connection with the Information Bottleneck Principle

Apply Information Bottleneck Principle to Self-supervised Learning:
Definition 2. (Self-supervised Information Bottleneck123). The Self-supervised IB aims at
maximizing the following Lagrangian:

IBssl = I (X ,ZS)− βI (S ,ZS), where β > 0. (12)

Intuitively, IBssl posits that a desirable representation is expected to be informative to
augmentation invariant features, and to be a maximal compressed representation of the input.

1Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. ”Barlow twins: Self-supervised
learning via redundancy reduction”. ICML 2021.

2Tsai, Yao-Hung Hubert, et al. ”Self-supervised learning from a multi-view perspective”. ICLR 2021.
3Federici, Marco, et al. ”Learning robust representations via multi-view information bottleneck”. ICLR 2020.
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Connection with the Information Bottleneck Principle

Theorem (2)

Assume 0 < β ≤ 1, then by minimizing the loss function L, the self-supervised Information
Bottleneck objective is maximized, formally:

min
θ
L ⇒ max

θ
IBssl

14 / 20



Connection with the Information Bottleneck Principle

Theorem

Assume 0 < β ≤ 1, then by minimizing Eq. (8), the self-supervised Information Bottleneck
objective is maximized, formally:

min
θ
L ⇒ max

θ
IBssl (13)

15 / 20



Influence on Downstream Tasks

Assumption 2 (Task-relevant information and data augmentation):
All the task-relevant information is shared across the input data X and its augmentations S ,
i.e., I (X ,T ) = I (S ,T ) = I (X ,S ,T ), or equivalently, I (X ,T |S) = I (S ,T |X ) = 0.
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Influence on Downstream Tasks

Theorem (Task-relevant/irrelevant information)

By optimizing Eq. (8), the task-relevant information I (ZS ,T ) is maximized, and the
task-irrelevant information H(ZS |T ) is minimized. Formally,

min
θ
L ⇒ max

θ
I (ZS ,T ) and min

θ
H(ZS |T ). (14)
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Major experimental results
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Major experimental results
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The End

20 / 20


