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summary

* We explore the “many faces” of adversarial risk and optimal adversarial risk,
which measure the robustness of algorithms to adversarial perturbations.
e Qur contributions:
* Arigorous foundation for adversarial risk, fixing the issues of measurability
* Equivalences between various definitions of adversarial risk
* Equivalence between adversarial robustness and robust hypothesis testing
with eo- Wasserstein uncertainty sets
* Various characterizations of optimal adversarial risk based on:
e Optimal transport
* Distributionally robust optimization
* Game theory
e Existence of a Nash equilibrium in game between adversary and algorithm.



Adversarial Attacks

Perturbed Maximize
data point W r loss at x’ 4007 x _
/ /
r— 2 € argmax {((x',y), w). -
d(.’E,fB’ ) S € * sign(VaJ(8, 2, y)) esign(VzJ(0,x,y))
/ “panda” “nematode” “gibbon”
Budget constraint: 57.7% confidence 8.2% confidence 99.3 % confidence
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Perturbation is “smal Source: Goodfellow et al. ICLR 2015
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Three Small Stickers in Intersection
Can Cause Tesla Autopilot to
Swerve Into Wrong Lane

Adversarial attacks are a secu rlty Security researchers from Tencent have
riSk fo r Safety_critica | app | ications! demonstrated a way to use physical attacks to spoof

Tesla's autopilot

By Evan Ackerman

Source: IEEE Spectrum



Adversarial Risk

General Loss: Re(f,w) = Ey )~ { sup E((a:’,y),w)}
d(x,x")<e

Class 1
Expected value of worst-case loss
Class O~
A€ A
P”F’rs in Expanded ?
ratio T:1 \ r error regions \
Binary T 1
Classification  Rge(lo/1,A) = T 1p0(A@€) + 1p1((AC)@€)
0/1 Loss: J
True label De .
distributions AV = UacaBe (a)



A Variety of Definitions

Rge(lo/r, A) Minkowski set expansion Re(lo/1,A) Closed set expansion
T L T € 1 C\€
De c\De
T+1p0(A )+T+1p1((A) ) T_|_1p0(A)—|—T+1p1((A))

A@E = UaeABe(a,)

Original definition, measurability issues

A ={x e X :d(z,A) <¢€}

Budget constraint violated

R, (Lo/1,A) Transport maps

RE, (lo/1, A) Transport couplings

T 1

- A L AC
fo,f?l:lXp%X T—I—lfoﬁp(]( )—l_ T_|_1f1|1191(( ))
VeeX,d(x,fi(x))<e

fen(A) = u(f~1(A4))

Deterministic perturbation

T 1

Po(A) + =P ((A))

sup T—l—l

Woo (p1,p7) <€ I'+1
Woo(pO:pé})Se

Weo(p,v) = inf esssup d(z,z’)
WEH(IUUV) (Jj,a}’)w'ﬁ

Budget constraint holds a.s.




The Many Faces of Adversarial Risk

* The diversity of definitions makes it challenging to compare approaches
* Not all definitions are well-defined — issues of measurability persist (for Rgc(A))
* This has led to incorrect proofs and insufficient assumptions

A a mathematically rigorous foundation for
adversarial risk is essential for future research.




Our Contributions (part 1 of 4)

Risk | Defining Characteristic | Adversary’s action | Perturbation | d(z,z’) < €?
(| Rae Minkowski set expansion reA—a e A¥e Random Yes, Vx —
. Do, P1 — Doy P} Almost surely
R Transport couplings Random
B P Pre Woo(pi, p;) < e yes, Va
L Rp. Transport maps r— x' = fi(x) Deterministic Yes, Va
ul R, Closed set expansion r€EA— e A Random No
. (Rd, E(Rd)) ) Euclidean space with Lebesgue o-algebra
Any Polish —
ny Polish space (X.B(X)) or (X, B(X))
— Borel sets in universally measurable metric space
» (X,B(X)) and A € B(X) « Y P
» (R, L(RY)) and pg, p1 have densities Conditions for which

Conditions for equivalence
with adversarial risk

adversarial risk is well-defined




Our Contributions (part 2 of 4)

Optimal P f R (f A
Adversarial Risk: ¢ AeB(x) se(lo/1, A)

Optimal transport characterization
of optimal adversarial risk: 0-1 valued

transport cost

/_/H

1
R,., = —— |1— inf inf E,oeor1{d(z,z") > 2¢
Pe T T 41 qEP(?C‘)TFEH(Q:pl)\( o) I ) 5
q=T'po ~
u Expected transport costJ

Optimal transport cost

. Optimize over probability measures
stochastically dominated by Tp, (T>1)



Our Contributions (part 3 of 4)

Optimal P f R (f A
Adversarial Risk: ¢ AeB(x) se(lo/1, A)

Distributionally robust optimization based
characterization of optimal adversarial risk:

Total Variation

_ distance  _
R’ ) PR E—ﬁ)
— sup e — 11 TV \4,P1
v Wao (pr,p})<e 1 11 4€P(X)
Woo (pO:pfo)Se — Qijo -
AN /
—~
Contamination of true distributions Bayes risk for binary classification

in eo-Wasserstein metric between g and p’,



Our Contributions (part 4 of 4)

Optimal
Adversarial Risk:

R =
De T AeB(x)

Game theoretic characterization of
optimal adversarial risk:

Player 1: Algorithm f4(z) = 1{x € A}
Action space: decision regions

T

inf sup
AEB(X) W (p1,p})<e
Weo (po,pg) <e

296 — T‘(A,p’o,pll) —

inf R@E(ﬁo/l, A)

T
T+1

P ((4))

po(A) +

T(Aaplovpll) —

Payoff function

Player 2: Adversary
Action space: Perturbed distributions in Wasserstein ball

T

sup
Woo (pl 7p1)§€
WOO (p()vp,O)SG

r(A, py,p})

!

inf
AEB(X)

—

Minimax theorem => Existence of Nash Equilibrium



Summary & Related Works

Our results

Technical tools

Previous works that we
generalize/extend/strengthen

Conditions for which adversarial risk
is well-defined

Conditions for equivalences
between various notions of
adversarial risk

Euclidean space: Porous sets
Polish space: Analytic sets

* Meunier et al. (ICML, 2021)
* Pydiand Jog (IEEE Trans. IT,
2021)

Optimal transport characterization
of optimal adversarial risk

Generalized Strassen’s theorem
Duality in linear programming

* Strassen (Ann. Math. Stat. 1965)

 Dohmatob (ICML 2019)
* Bhagoji et al. (NeurlPS, 2019)
* Pydiand Jog (ICML, 2020)

Distributionally robust optimization
based characterization of optimal
adversarial risk

Euclidean space: Huber and Strassen’s
theory of 2-alternating capacities
Polish space: measurable selection
theorems

* Sinha et al. (ICLR 2018)

* Tu et al. (NeurlPS 2019)

* Pydiand Jog (IEEE Trans. IT,
2021)

Game theoretic characterization of
optimal adversarial risk

All of the above

* Pinot et al. (ICML 2020)
* Bose et al. (NeurlPS 2020)
* Meunier et al. (ICML, 2021)




