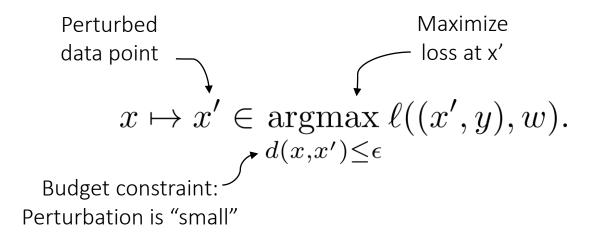
The Many Faces of Adversarial Risk

Muni Sreenivas Pydi ECE, University of Wisconsin-Madison

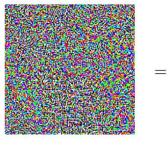
Varun Jog DPMMS, University of Cambridge



VERSITY OF WISCONSINGUADE

Summary

- We explore the "many faces" of adversarial risk and optimal adversarial risk, which measure the robustness of algorithms to adversarial perturbations.
- Our contributions:
 - A rigorous foundation for adversarial risk, fixing the issues of measurability
 - Equivalences between various definitions of adversarial risk
 - Equivalence between adversarial robustness and robust hypothesis testing with ∞- Wasserstein uncertainty sets
 - Various characterizations of optimal adversarial risk based on:
 - Optimal transport
 - Distributionally robust optimization
 - Game theory
 - Existence of a Nash equilibrium in game between adversary and algorithm.


Adversarial Attacks

Adversarial attacks are a security risk for safety-critical applications!

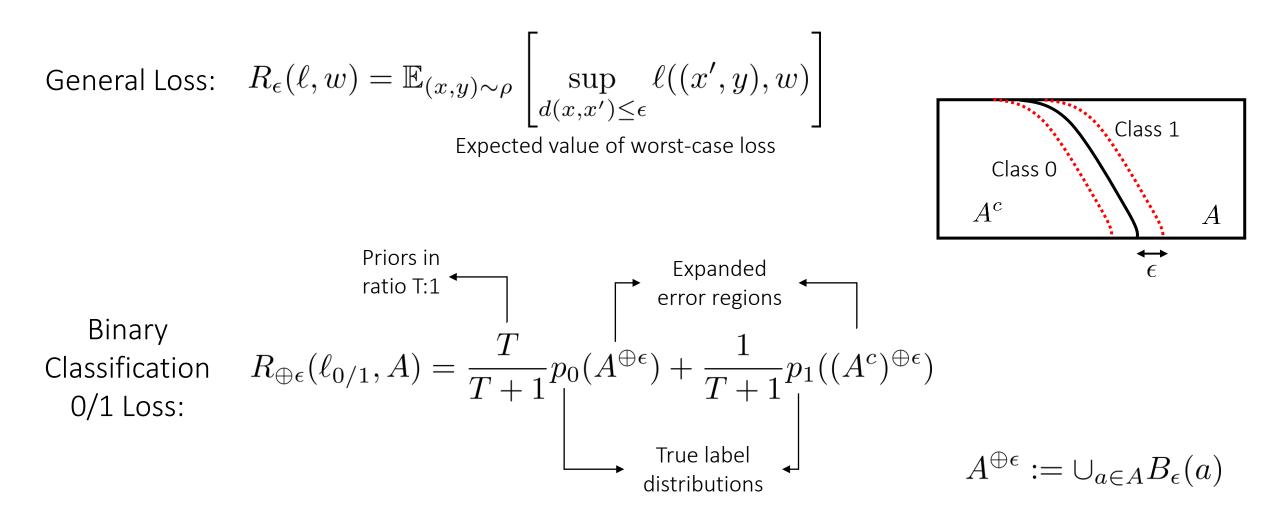
 $+.007 \times$

 \boldsymbol{x} "panda" 57.7% confidence $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode" 8.2% confidence

 $\epsilon sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

Source: Goodfellow et al. ICLR 2015

01 Apr 2019 | 16:56 GMT


Three Small Stickers in Intersection Can Cause Tesla Autopilot to Swerve Into Wrong Lane

Security researchers from Tencent have demonstrated a way to use physical attacks to spoof Tesla's autopilot

By Evan Ackerman

Source: IEEE Spectrum

Adversarial Risk

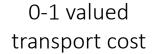
A Variety of Definitions

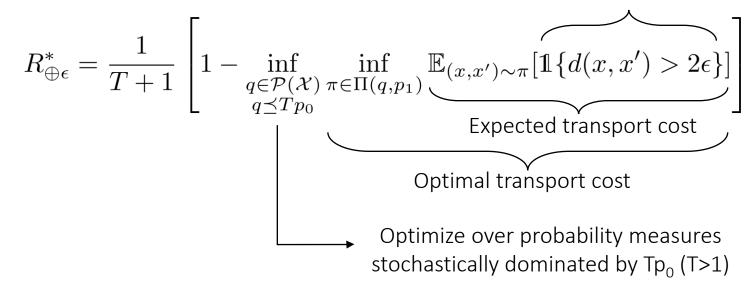
$R_{\oplus \epsilon}(\ell_{0/1}, A)$ Minkowski set expansion	$R_{\epsilon}(\ell_{0/1}, A)$ Closed set expansion
$\frac{T}{T+1}p_0(A^{\oplus \epsilon}) + \frac{1}{T+1}p_1((A^c)^{\oplus \epsilon})$	$\frac{T}{T+1}p_0(A^{\epsilon}) + \frac{1}{T+1}p_1((A^c)^{\epsilon})$
$A^{\oplus \epsilon} := \cup_{a \in A} B_{\epsilon}(a)$	$A^{\epsilon} := \{ x \in \mathcal{X} : d(x, A) \le \epsilon \}$
Original definition, measurability issues	Budget constraint violated
$R_{F_{\epsilon}}(\ell_{0/1}, A)$ Transport maps	$R_{F_{\epsilon}}(\ell_{0/1}, A)$ Transport couplings
$\sup_{\substack{f_0, f_1: \mathcal{X} \to \mathcal{X} \\ \forall x \in \mathcal{X}, d(x, f_i(x)) \le \epsilon}} \frac{T}{T+1} f_{0 \sharp p_0}(A) + \frac{1}{T+1} f_{1 \sharp p_1}((A^c))$	$\sup_{\substack{W_{\infty}(p_{1},p_{1}') \leq \epsilon \\ W_{\infty}(p_{0},p_{0}') \leq \epsilon}} \frac{T}{T+1} p_{0}'(A) + \frac{1}{T+1} p_{1}'((A^{c}))$
$f_{\sharp\mu}(A) = \mu(f^{-1}(A))$	$W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \operatorname{esssup}_{(x,x') \sim \pi} d(x,x')$
Deterministic perturbation	Budget constraint holds a.s.

The Many Faces of Adversarial Risk

- The diversity of definitions makes it challenging to compare approaches
- Not all definitions are well-defined issues of measurability persist (for $R_{\oplus \epsilon}(A)$)
- This has led to incorrect proofs and insufficient assumptions

A a mathematically rigorous foundation for adversarial risk is essential for future research.

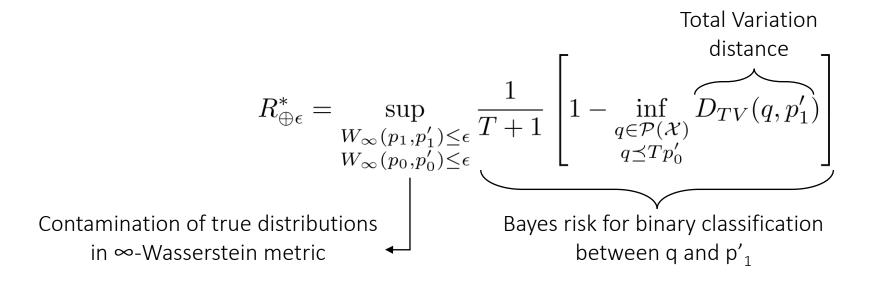

Our Contributions (part 1 of 4)


Risk	Defining Characteristic	Adversary's action	Perturbation	$d(x, x') \le \epsilon?$	
$R_{\oplus \epsilon}$	Minkowski set expansion	$x \in A \to x' \in A^{\oplus \epsilon}$	Random	Yes, $\forall x$	
$R_{\Gamma_{\epsilon}}$	Transport couplings	$\begin{array}{c} p_0, p_1 \to p'_0, p'_1 \\ W_{\infty}(p_i, p'_i) \le \epsilon \end{array}$	Random	$\begin{array}{c} \text{Almost surely} \\ \text{yes, } \forall x \end{array}$	
$R_{F_{\epsilon}}$	Transport maps	$x \to x' = f_i(x)$	Deterministic	Yes, $\forall x$	
R_{ϵ}	Closed set expansion	$x \in A \to x' \in A^{\epsilon}$	Random	No	
	Any Polish space —		dean space with Leb	esgue σ-algebra	
	Any Polish space $(\mathcal{X}, \overline{\mathcal{B}}(\mathcal{X}))$			<u> </u>	ace
	Any Polish space $(\mathcal{X}, \overline{\mathcal{B}}(\mathcal{X} \rightarrow (\mathcal{X}, \mathcal{A}))))))))))))))))))))))))))))))))))))$	(i)) or $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$	sets in universally m	<u> </u>	
	Any Polish space $(\mathcal{X}, \overline{\mathcal{B}}(\mathcal{X} \rightarrow (\mathcal{X}, \mathcal{A}))))))))))))))))))))))))))))))))))))$	(i)) or $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ (i)) and $A \in \mathcal{B}(\mathcal{X})$ \leftarrow Borel	sets in universally m	easurable metric spa	h

Our Contributions (part 2 of 4)

Optimal $R_{\oplus \epsilon}^* := \inf_{A \in \mathcal{B}(\mathcal{X})} R_{\oplus \epsilon}(\ell_{0/1}, A)$

Optimal transport characterization of optimal adversarial risk:



Our Contributions (part 3 of 4)

Optimal $R_{\oplus \epsilon}^* := \inf_{A \in \mathcal{B}(\mathcal{X})} R_{\oplus \epsilon}(\ell_{0/1}, A)$

Distributionally robust optimization based characterization of optimal adversarial risk:

Our Contributions (part 4 of 4)

Optimal Adversarial Risk: $R_{\oplus \epsilon}^* := \inf_{A \in \mathcal{B}(\mathcal{X})} R_{\oplus \epsilon}(\ell_{0/1}, A)$

Game theoretic characterization of optimal adversarial risk:

$$r(A, p'_0, p'_1) = \frac{T}{T+1}p'_0(A) + \frac{1}{T+1}p'_1((A^c))$$
Payoff function

ayoff functior

Player 1: Algorithm $f_A(x) = \mathbb{1}\{x \in A\}$ Player 2: Adversary Action space: decision regions Action space: Perturbed distributions in Wasserstein ball $R_{\oplus\epsilon}^* = \inf_{\substack{A \in \mathcal{B}(\mathcal{X}) \\ \bigvee \\ W_{\infty}(p_0, p'_0) \le \epsilon}} \sup_{\substack{r(A, p'_0, p'_1) = \\ W_{\infty}(p_1, p'_1) \le \epsilon \\ W_{\infty}(p_0, p'_0) \le \epsilon}} \sup_{\substack{W_{\infty}(p_1, p'_1) \le \epsilon \\ W_{\infty}(p_0, p'_0) \le \epsilon}} \inf_{\substack{A \in \mathcal{B}(\mathcal{X}) \\ W_{\infty}(p_0, p'_0) \le \epsilon}} r(A, p'_0, p'_1) = \sum_{\substack{W_{\infty}(p_1, p'_1) \le \epsilon \\ W_{\infty}(p_0, p'_0) \le \epsilon}} \sum_{\substack{K \in \mathcal{B}(\mathcal{X}) \\ W_{\infty}(p_0, p'_0) \le \epsilon}}} \sum_{\substack{K \in \mathcal{B}(\mathcal{X}) \\ W_{\infty}(p_0, p'_0) \le \epsilon}} \sum_{\substack{K \in \mathcal{B}(\mathcal{X}) \\ W_{\infty}(p_0, p'$ Minimax theorem => Existence of **Nash Equilibrium**

Summary & Related Works

Our results	Technical tools	Previous works that we generalize/extend/strengthen
Conditions for which adversarial risk is well-defined Conditions for equivalences between various notions of adversarial risk	Euclidean space: Porous sets Polish space: Analytic sets	 Meunier et al. (ICML, 2021) Pydi and Jog (IEEE Trans. IT, 2021)
Optimal transport characterization of optimal adversarial risk	Generalized Strassen's theorem Duality in linear programming	 Strassen (Ann. Math. Stat. 1965) Dohmatob (ICML 2019) Bhagoji et al. (NeurIPS, 2019) Pydi and Jog (ICML, 2020)
Distributionally robust optimization based characterization of optimal adversarial risk	Euclidean space: Huber and Strassen's theory of 2-alternating capacities Polish space: measurable selection theorems	 Sinha et al. (ICLR 2018) Tu et al. (NeurIPS 2019) Pydi and Jog (IEEE Trans. IT, 2021)
Game theoretic characterization of optimal adversarial risk	All of the above	 Pinot et al. (ICML 2020) Bose et al. (NeurIPS 2020) Meunier et al. (ICML, 2021)