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The canonical 2-armed bandit (2-MAB) revisited

@ Two arms with means /i1, jio.

o Gap A = i1 — o > 0.
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The canonical 2-armed bandit (2-MAB) revisited

@ Two arms with means /i1, jio.

o Gap A = g — o > 0.

@ Reward sequence for arm i € {1,2}: {X;;:j=1,2,...}.
@ Xi;'s are independent and bounded in [0, 1].
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The canonical 2-armed bandit (2-MAB) revisited

Two arms with means /1, jio.

Gap A = g — po > 0.

Reward sequence for arm i € {1,2}: {X;;:j=1,2,...}.
X; j's are independent and bounded in [0, 1].

Goal. Maximize cumulative expected payoffs over n plays.

Question. What should inform the sequence of arm-pulls?
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The canonical 2-armed bandit (2-MAB) revisited

e Policy 7 := {m; t =1, ..., n} prescribes arm 7, € {1,2} at time ¢.
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The canonical 2-armed bandit (2-MAB) revisited

e Policy 7 := {m; t =1, ..., n} prescribes arm 7, € {1,2} at time ¢.
o Cumulative regret of policy 7 after n samples is given by

n

Ry .= Z [Ml - Xm,Nm(f)] )

t=1

where N, (t) indicates the number of pulls of arm 7; until time t.
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The canonical 2-armed bandit (2-MAB) revisited

e Policy 7 := {m; t =1, ..., n} prescribes arm 7, € {1,2} at time ¢.
o Cumulative regret of policy 7 after n samples is given by

n

Ry .= Z [Ml - Xm,Nm(f)] )

t=1

where N, (t) indicates the number of pulls of arm 7; until time t.

@ The goal is minimization of the expected cumulative regret, i.e.,
inf ER"
well n’

where 1 is the set of non-anticipating policies
(A "good” policy has o(n) regret, i.e., long-run-average optimality.).
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Well-known algorithms for the problem

Plethora of available algorithms.

Forced sampling-based: Explore-then-Commit, ¢,-Greedy, etc.

g

non—adaptive (/\—dependent)
o Posterior sampling-based: Thompson Sampling and variants, etc.

adaptive (A:ndependent)
Optimism-based: UCB and variants , etc.

adaptive (/\—independent)
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Upper Confidence Bounds: The Optimism principle

UCB(p): UCB with exploration coefficient p

At time t + 1, play an arm 743 € {1,2} according to

ie{1,2} N,'(t)

)

- log t
Ter1 € arg max <X,-(t)-|— po8 )

Here,

@ X;(t) denotes the empirical mean reward from arm i at time t¥, i.e.,

N;(t
Zj:(l)XiJ

X,'(i‘) = N,'(t)

@ p = 2 corresponds to classical UCB1.
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Achievable regret in 2-MAB

o Instance-dependent bounds (Fixed /\, large n) [Easy problems]:

Ciplogn n GA
A p—1

ER] < for m = UCB with p > 1.

|
ERT = Q < Oin) (L.B. for any policy ).
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Achievable regret in 2-MAB

o Instance-dependent bounds (Fixed /\, large n) [Easy problems]:

Ciplogn n GA

ERT <
n A p—1

for m = UCB with p > 1.

|
ERT = Q < Oin) (L.B. for any policy ).

e Minimax bounds (Fixed n, worst-case /\) [Hard problems]:

ER; < C,/nlogn for m = UCB with p > 1.
ER] =Q (v/n) (L.B. for any policy 7).
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Achievable regret in 2-MAB

o Instance-dependent bounds (Fixed /\, large n) [Easy problems]:

Ciplogn n GA

ERT <
n A p—1

for m = UCB with p > 1.

|
ERT = Q < Oin) (L.B. for any policy ).

e Minimax bounds (Fixed n, worst-case /\) [Hard problems]:

< Cy/nlogn for m = UCB with p > 1.
=Q(v/n) (L.B. for any policy 7).

7T
!'I
us
n

ER

@ Note: Thompson Sampling also has similar guarantees, to wit,

@) ('°g") and O (v/nlogn) respectively.
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How about the distribution of arm-pulls?

@ How well do we understand the distribution of NlT(")?
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How about the distribution of arm-pulls?

@ How well do we understand the distribution of NlT(")?

o Existing results offer limited insight.

o E.g., if A > 0, then first-order optimal algorithms guarantee
Nl(n)

n

=1 as n— co.
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How about the distribution of arm-pulls?

@ How well do we understand the distribution of NlT(")?
o Existing results offer limited insight.

o E.g., if A > 0, then first-order optimal algorithms guarantee

N

ﬂ =1 as n— oo.
n

o But, what happens to (") as A 07

n
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Distribution of arm-pulls as

@ Why bother about Mi(n) a5 A — 07

n
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Distribution of arm-pulls as

o Why bother about (") as A — 07

n

e Consider a 2-MAB with A = 0 and Bernoulli(0.5) rewards.
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Distribution of arm-pulls as

e Why bother about N1,5n) as A — 07

o Consider a 2-MAB with A = 0 and Bernoulli(0.5) rewards.

5 TS with Beta priors 5 UCB1

4 4

3 3

2 2

1 1

0.0 0.5 1.0 0.0 0.5 1.0

Figure: Empirical distribution of NIT(") after n = 10* pulls [N = 10° experiments].
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Distribution of arm-pulls as

e Why bother about N1,5n) as A — 07

e Consider a 2-MAB with A = 0 and Bernoulli(0.5) rewards.

5 TS with Beta priors 5 UCB1

4 4
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0.0 0.5 1.0 0.0 0.5 1.0

Figure: Empirical distribution of (") after n = 10 pulls [N = 10° experiments].

o Fairness: “Similar” arms should get “similar” traffic w.h.p.
@ Ex post inference: Clinical trials of 2 “similarly” efficacious vaccines!
e The Countable-armed Bandit problem [KZ'20].
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The curious case of

TS-BP: Thompson Sampling with Beta priors, Bernoulli likelihoods

At time t + 1, play an arm 741 € {1,2} according to

Tey1 € arg ,_er?:laé} B; + (sit’ Fit) .

)
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The curious case of /A — 0

TS-BP: Thompson Sampling with Beta priors, Bernoulli likelihoods

At time t + 1, play an arm 741 € {1,2} according to

Ter1 € arg max Bi: (Sf,Ff).
1

)

[Theorem] “Instability” of TS-BP
In a 2-MAB with , there exists a pair of instances (v1, 1) s.t.

N
@ On vy, lﬁn)iéasn%oo.

o On vy, M) — yniform on [0,1] as n — oo,

-~
—
N

-

N
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General A: Distribution of arm-pulls under UCB

[Theorem] Sampling asymptotics for UCB with p > 1

In a 2-MAB with gap

, the following holds as n — oc:

1 if ,

Ni(n

1rs) = QN5(0) if for some fixed 6 > 0,
1 if

A, (0) is deterministic and can be characterized in closed-form!
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General A: Distribution of arm-pulls under UCB

[Theorem] Sampling asymptotics for UCB with p > 1

In a 2-MAB with gap 4\, the following holds as n — co:

1 if
N1(n) . )
= dn(6) if
3 if

for some fixed 8 > 0,

A, (0) is deterministic and can be characterized in closed-form!

Recall: Thompson Sampling may result in a non-degenerate limit!
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Worst-case behavior of UCB

[Theorem] Minimax regret of UCB with p > 1
In a 2-MAB, the worst-case regret of UCB follows the sharp asymptotic

ERY ~ f(p)+\/nlog n.

The constant f(p) can be characterized in closed-form!
(Note: The information-theoretic optimal minimax rate is © (/n).)
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Worst-case behavior of UCB

[Theorem] Minimax regret of UCB with p > 1
In a 2-MAB, the worst-case regret of UCB follows the sharp asymptotic

ERY ~ f(p)+\/nlog n.

The constant f(p) can be characterized in closed-form!
(Note: The information-theoretic optimal minimax rate is © (/n).)

Remark: Previous best result for UCB was O (\/nlog n) minimax regret.
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Diffusion-scale analysis of bandits

@ Information-theoretic hardest instances have A = %

e Analogous to the “heavy-traffic/QED” regime in queuing,
where 1 - traffic intensity = ﬁ

@ The queuing problem admits well-known diffusion limits.

@ Can similar results be established also for bandits?
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Diffusion approximation for UCB

[Theorem] Diffusion limit regret of UCB with p > 1
In a 2-MAB with gap , the following holds under UCB as n — oo:

R™ 2 2
Lntj) N <_t+ 0’1+UzB(t)>
( Vi te[0,1] 2 2 te[0,1]

where {02 : i =1,2} are the reward variances, and B(t) is a standard
Brownian motion in R.
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Diffusion approximation for UCB

[Theorem] Diffusion limit regret of UCB with p > 1
In a 2-MAB with gap , the following holds under UCB as n — oo:

R™ 2 2
Lntj) N <_t+ Ul+028(t)>
( Vi te[0,1] 2 2 te[0,1]

where {02 : i =1,2} are the reward variances, and B(t) is a standard
Brownian motion in R.

Note: For Thompson Sampling, the diffusion limit is characterized by the
solution(s) to a SDE ([Wager & Xu, 2021],[Fan & Glynn, 2021]).
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