Statistical Decidability in Confounded, Linear Non-Gaussian Models

Konstantin Genin

Group Leader: "Epistemology and Ethics of ML" Cluster of Excellence: "Machine Learning for Science" University of Tübingen

NeurIPS 2021

35th Conference on Neural Information Processing Systems

The LiNGAM Model

Theorem (Shimizu et al., 2006). When

- 1. noise terms are **independent** and **non-**Gaussian,
- 2. functional relationships are **linear** and **a-cyclic** and
- 3. there are no unobserved confounders,

it is possible to converge (pointwise) to the **DAG** generating the data.

Shimizu, Shohei, Patrik O. Hoyer, Aapo Hyvärinen, Aapo, and Antti Kerminen. "A Linear Non-Gaussian Acyclic Model for Causal Discovery." *Journal of Machine Learning Research* 7, no. 72 (2006): 2003–30.

The Linear Gaussian Model

Theorem (Spirtes et al., 2001). When

- 1. noise terms are independent and Gaussian,
- 2. functional relationships are **linear** and **a-cyclic** and
- 3. there are no unobserved confounders,

it is possible to converge (pointwise) to the **Markov equivalence class** of the DAG generating the data.

Pitfalls of Pointwise

But pointwise convergence is compatible with all kinds of short run behavior.

Kelly, Kevin T, and Conor Mayo-Wilson (2010). "Causal Conclusions That Flip Repeatedly and Their Justification," Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010). <u>https://arxiv.org/abs/1203.3488v1</u>

Pitfalls of Pointwise

If noise is Gaussian, causal conclusion can flip arbitrarily often as data accumulate.

Kelly, Kevin T, and Conor Mayo-Wilson (2010). "Causal Conclusions That Flip Repeatedly and Their Justification," Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010). <u>https://arxiv.org/abs/1203.3488v1</u>

Uniform Convergence is Impossible

But **uniform** convergence to the true DAG is provably **impossible** in the LiNGAM framework.

Let \mathcal{M} be a set of causal models, each a potential data-generating mechanism.

A question \mathfrak{Q} , partitioning \mathcal{M} into a countable set of **answers**.

A relevant response is a union of answers.

A relevant response is a union of answers.

A relevant response is a union of answers.

If $M \in \mathcal{M}$,

If $M \in \mathcal{M}$, let \mathfrak{Q}_M be the answer true in M.

If $M \in \mathcal{M}$,

If $M \in \mathcal{M}$, let P_M be the distribution induced by M over observables.

Statistical Methods

A set of measurable functions (T_n) is a **method** if each one is a function from samples of size *n* to **relevant responses** (unions of answers).

Note: a method can **suspend judgment** by outputting UQ.

Decidability in the Limit

A method (T_n) decides \mathfrak{A} in the limit iff for all $M \in \mathcal{M}$,

•
$$P_M(T_n = \mathfrak{Q}_M) \longrightarrow 1 \text{ as } n \longrightarrow \infty.$$

Decidability in the Limit

A method (T_n) decides \mathfrak{A} in the limit iff for all $M \in \mathcal{M}$,

•
$$P_M(T_n = \mathfrak{Q}_M) \longrightarrow 1 \text{ as } n \longrightarrow \infty.$$

A question \mathfrak{Q} is **decidable in the limit** if some method decides it in the limit.

Topological Criterion for Limiting Decidability

Theorem. (Dembo & Peres, 1994)

A question is decidable in the limit if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

- $P_{\mathcal{A}}$ is disjoint from $P_{\mathcal{B}}$;
- P_{A} is a countable union of closed sets in the weak topology.

Dembo, Amir, and Yuval Peres (1994). "A Topological Criterion for Hypothesis Testing." *Annals of Statistics* 22(1): 106–17. https://doi.org/10.1214/aos/1176325360.

Decidability

A method (T_n) is an **\alpha-decision procedure** for \mathfrak{Q} iff it decides \mathfrak{Q} in the limit and

• for all sample sizes n, $P_M(\mathfrak{A}_M \subseteq T_n) < \alpha$.

A question \mathfrak{Q} is statistically **decidable** iff it has an α -decision procedure for all $\alpha > 0$.

Decidability

A method (T_n) is an **\alpha-decision procedure** for \mathfrak{Q} iff it decides \mathfrak{Q} in the limit and

• for all sample sizes n, $P_M(\mathfrak{A}_M \subseteq T_n) < \alpha$.

A question \mathfrak{Q} is statistically **decidable** iff it has an α -decision procedure for all $\alpha > 0$.

Note: It may be that $P_M(T_n = U\mathfrak{Q}) \approx 1$ for arbitrarily large *n*.

Topological Criterion for Decidability

Theorem. (Genin & Kelly, 2017)

A question is decidable if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

 $P_{\mathcal{A}}$ is disjoint from the (weak topology) closure of $P_{\mathcal{B}}$.

Genin, Konstantin, and Kevin T. Kelly. (2017) "The Topology of Statistical Verifiability." *Electronic Proceedings in Theoretical Computer Science* 251: 236–50. <u>https://doi.org/10.4204/EPTCS.251.17</u>.

Three Varieties of Decidability

	Output probably correct at every sample size.	Output probably informative after known sample size.	Output probably correct & informative after some (potentially unknown) sample size.
Uniformly Decidable			
Decidable		*	
Decidable in the Limit	*	*	

Three Varieties of Decidability

	Output probably correct at every sample size.	Output probably informative after known sample size.	Output probably correct & informative after some unknown sample size.
Uniformly Decidable			
Decidable		*	
Decidable in the Limit	*	*	

The LiNGAM Model

Theorem (Genin and Mayo-Wilson, 2020). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are **linear** and **a-cyclic** and
- 3. there are no unobserved confounders,

then causal orientation is decidable.

Genin, Konstantin and Mayo-Wilson, Conor. "Statistical Decidability in Linear, Non-Gaussian Models." *Causal Discovery & Causality-Inspired Machine Learning, NeurIPS 2020.*

LiNGAM + Confounding - Unfaithfulness

Theorem (Salehkaleybar et al., 2020). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are linear and a-cyclic,
- 3. there **may be** unobserved confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables are identified.

Salehkaleybar, Saber, et al. (2020) "Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables." *Journal of Machine Learning Research* 21.39: 1-24.

LiNGAM + Confounding - Unfaithfulness

Theorem (Salehkaleybar et al., 2020). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are linear and a-cyclic,
- 3. there **may be** unobserved confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables are identified.

But how *identified* are they, really?

Salehkaleybar, Saber, et al. (2020) "Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables." *Journal of Machine Learning Research* 21.39: 1-24.

Good News

Theorem (Genin, 2021). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are **linear** and **a-cyclic**,
- 3. there **may be** unobserved confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between **observed** variables are **decidable in the limit**.

Topological Criterion for Limiting Decidability

Theorem. (Dembo & Peres, 1994)

A question is decidable in the limit if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

- $P_{\mathcal{A}}$ is disjoint from $P_{\mathcal{B}}$;
- P_{A} is a countable union of closed sets in the weak topology.

Dembo, Amir, and Yuval Peres (1994). "A Topological Criterion for Hypothesis Testing." *Annals of Statistics* 22(1): 106–17. https://doi.org/10.1214/aos/1176325360.

Theorem (Genin, 2021). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are linear and a-cyclic,
- 3. there **may be** confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between **observed** variables are **not decidable**.

Flipping returns when we allow for unobserved confounders.

Although causal orientation is a solvable problem (assuming faithfulness), it is no longer decidable.

Let Z_1 , Z_2 be independent, Gaussian.

Let $V_1 = Z_1 + Z_2$ and $V_2 = Z_1 - Z_2$. Then $U_1 + V_1$ and $U_2 + V_2$ are independent and non-Gaussian.

Let $J_{1,n} = Z_1 + (1/n)W_1$ and $J_{2,n} = Z_2 + (1/n)W_2$.

Then the rhs are faithful, confounded LiNGAMs and $(X_{1,n}, X_{2,n}) \Rightarrow (X_1, X_2)$.

Topological Criterion for Decidability

Theorem. (Genin & Kelly, 2017)

A question is decidable if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

 $P_{\mathcal{A}}$ is disjoint from the (weak topology) closure of $P_{\mathcal{B}}$.

Genin, Konstantin, and Kevin T. Kelly. (2017) "The Topology of Statistical Verifiability." *Electronic Proceedings in Theoretical Computer Science* 251: 236–50. <u>https://doi.org/10.4204/EPTCS.251.17</u>.

Route 1: Strengthen Faithfulness Assumption.

Route 1: Strengthen Faithfulness Assumption.

Uhler, Caroline, et al. "Geometry of the faithfulness assumption in causal inference." The Annals of Statistics (2013): 436-463.

Route 2: Strengthen Non-Gaussianity Assumption.

Recall: $J_{1,n} = Z_1 + (1/n)W_1$ and $J_{2,n} = Z_2 + (1/n)W_2$.

Route 3: No Gaussian Components.

Recall $V_1 = Z_1 + Z_2$ and $V_2 = Z_1 - Z_2$.

Route 3: No Gaussian Components.

X has Gaussian components if X = Y + Z, with $Y \perp Z$ and Z Gaussian.

Thank You!

Questions: konstantin.genin@uni-tuebingen.de