
LEARNING MIXED MULTINOMIAL LOGITS WITH

PROVABLE GUARANTEES

Yiqun Hu

David Simchi-Levi, MIT
Zhenzhen Yan, Nanyang Technological University



INTRODUCTION
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MIXED MULTINOMIAL LOGIT (MMNL)

• Consider a set of [m] = {1, . . . ,m} alternatives

• Population modeled by K MNL mixtures

• Each mixture k:
▶ shares the same utility Vkj, j ∈ [m]

▶ exhibits the same logit model

qkj =
exp(Vkj)∑

i∈[m] exp(Vki)
∀j ∈ [m]

▶ associates with a mixture weight αk

▶ Also known as the softmax function
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MIXED MULTINOMIAL LOGIT (MMNL)

• Assume linear utility given observed candidate feature vector
zj ∈ Rd, ∀ j ∈ [M]

Vkj = β⊤
k zj, ∀ k

• Aggregated choice probability:

g =

K∑
k=1

αkqk ∈ Rm

where qkj := qj(βk) =
exp(β⊤k zj)∑

i∈[m] exp(β
⊤
k zi)

• Goal: estimate αk,βk, k = 1, . . . ,K
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LITERATURE REVIEW

Learning MMNL

• Heuristics
▶ EM algorithm (Train 09’)

• Learning algorithms
▶ Uniform 2-MNL (Chierichetti et al 18’)
▶ Arbitrary 2-MNL (Tang 20’)

• Hybrid (convergence only at aggregated level)
▶ Frank-Wolfe (Jagabathula et al 20’)
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STOCHASTIC SUBREGION

FRANK-WOLFE (SSRFW)
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PROBLEM FORMULATION

• Data assumption
▶ Population of size N
▶ For each time period t = 1, . . . ,T:

♦ Observe historical decision for each decision maker i: Y(t)
i ∈ RM

with Y(t)
ij = 1[i chose j at time t]

♦ Compute observed share: y(t)
j = 1

N

∑N
i=1 Y(t)

ij

• Learning objective:

min
g∈Conv(P)

L(g;y) ≡ min
g∈Conv(P)

1
2

T∑
t=1

∥∥∥y(t) − g
∥∥∥2

where g =
∑K

k=1 αkqk(βk)
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STOCHASTIC SUBREGION FRANK-WOLFE

• Let P be the set of all logit vectors given zj, ∀j
• Construct a candidate set Q ⊂ P of logit vectors

• Require ∃ π : [L]→ [K],
∥∥∥qℓ − q∗

π(ℓ)

∥∥∥ ≤ ϵ, ∀ qℓ ∈ Q
L is the number of elements in Q

• Each of the extreme points of Conv(Q) is close to some ground
truth qk
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SCORE MATRIX

For decision maker i (of type k)

• Historical data: Y(t)
i ∈ RM, t = 1, · · · ,T

• Define X(t)
i , t = 1, . . . ,T i.i.d random variable with pmf q∗

k
X(t)

i = j if Y(t)
ij = 1

• Compute the empirical CDF

FT(x; i) =
1
T

T∑
t=1

1{X(t)
i ≤x}, x ∈ [M]

Pairwise score (dissimilarity) between i and j

s(i, j) = ||FT(x; i)− FT(x; j)||∞
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Q CONSTRUCTION ALGORITHM

Q =

qℓ

∣∣∣∣∣qℓ =
1

nT

∑
i∈Iℓ

T∑
t=1

Y(t)
i


ℓ=1,...,L

Input: score matrix S, number of subsamples L, subsample size n
Initialization: Q = set()

1 for ℓ← 1 to L do
2 Choose seed: i ∼ U(0, N)

3 Initiate: I = set()

4 while |I| ≠ n do
5 j← random_sample([N] \ I)
6 Generate u ∼ U(0, 1)
7 if u < pj|i then
8 I.add(j)
9 end

10 end

11 Compute qℓ =
1

nT

∑
i∈I

T∑
t=1

Y(t)
i

12 Q.add(qℓ)
13 end

Output: Q
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THE SSRFW ALGORITHM

Input: data y, Q
Initialization: k = 0; α(0) = [1], a random g(0)

1 while stopping condition not met do
2 k← k + 1

3 Compute q = argmin
v∈Conv(Q)

⟨∇L
(

g(k−1);y
)
,v− g(k−1)⟩

→ support finding step

4 Compute α(k) = argmin
α∈∆k

L

(
α
(k)
0 g(0) +

k∑
s=1

α
(k)
s q(s)

)
→ proportions update step

5 Update g(k) := α
(k)
0 g(0) +

k∑
s=1

α
(k)
s q(s)

6 end
Output: choice prob. q(0), . . . , q(k)

mixture weights. α(k) ∈ ∆k ⊂ Rk+1

LEARNING MMNL WITH PROVABLE GUARANTEES ↠ STOCHASTIC SUBREGION FRANK-WOLFE (SSRFW) 10



SSRFW ILLUSTRATION

y

(0, 1, 0)

(1, 0, 0) (0, 0, 1)
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SSRFW ILLUSTRATION

y

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

g(0)
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SSRFW ILLUSTRATION

y

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

g(0)

q(1)
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SSRFW ILLUSTRATION

y
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SSRFW ILLUSTRATION

y

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

g(0)

q(1)
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SSRFW ILLUSTRATION

y

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

g(0)

q(1)

g(1)

q(2)
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SSRFW ILLUSTRATION

y

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

g(0)

q(1)

g(1)

q(2)

g(2)
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ADVANTAGES

• Utilize individual choice data

• No prior knowledge on the number of mixtures (K) needed -
no model misspecification

• Provable convergence on the estimators based on the Q
construction algorithm
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MAIN RESULT

Theorem 1

Let g =
∑K

k=1 αkqk be a mixed multinomial logit (MMNL) model over a set
of M items. Assume M ≥ K. For any ϵ > 0, 0 < δ < 1, SSRFW outputs an
MMNL ĝ =

∑K′

k=1 α̂kq̂k where K′ ≥ K such that, with probability ≥ 1 − δ,
there exists a many-to-one mapping π : j 7→ i, j ∈ [K′], i ∈ [K] such that

∥∥∥q̂j − qπ(j)

∥∥∥ ≤ ϵ,∀ j and

∣∣∣∣∣∣
∑

j:π(j)=i

α̂j − αi

∣∣∣∣∣∣ ≤ ϵ,∀ i

The number of samples required n(ϵ, δ) is polynomial in
1
ϵ

and
1
δ

.
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NUMERICAL EXPERIMENTS

Simulation Studies
Case Study on Nielsen Panel Data
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MIXTURE RECOVERY

q(0), . . . , q(K′) output from the algorithm

FW
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MIXTURE RECOVERY

q(0), . . . , q(K′) output from the algorithm

SSRFW
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EXAMPLE RESULTS (NIELSEN PANEL DATA)

Figure 1: Categories: yogurt, pet food, candy, cereal
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CONCLUSION
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CONCLUSION

• Developed a new algorithm: SSRFW
▶ based on the FW framework
▶ utilize personal-level choice data
▶ provide theoretical guarantees on the estimators
▶ recover true model parameters

• Conducted various numerical experiments to compare SSRFW
and the original FW

▶ Simulation study to compare to the ground truth
▶ Case studies on other Nielsen Consumer Panel Data
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