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GNNs: Expressivity vs Scalability
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Subgraph-Enhanced GNNs
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▶ Reconstruction GNNs 1

▶ ESAN 2

▶ ID-Aware GNNs

▶ Nested GNNs

▶ · · ·
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Limitations of Subgraph Enhancement
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k-OSAN: The Architecture
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Our Results: The Expressivity Landscape
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For k ≥ 1, k-OSAN form a hierarchy of GNNs with strictly increasing expressive power.
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For every k ≥ 1, k-OSAN is strictly less powerful than (k + 1)-WL.
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The k-OSAN forms a unified framework for capturing known subgraph-enhanced GNNs.
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Data-driven sampling of subgraphs leads to better generalization than random sampling.
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The I-MLE framework can improve the scalability of subgraph-enhanced GNNs.


