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s Background And Motivation

* Most embedded topic models(ETMs) are learned by maxizing the likelihood

e Purely data-driven, ignoring the easily accessible knowledge graph
e The learned topics sometimes are unfriendly to users

*  While several knowledge-based ETMs have recently been proposed

e Shallow topic structures
e Orignoring the mismatch issue of the provided knowledge graph

between the target corpus
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* We first propose a Bayesian generative framework (TopicKG) for incorporating

domain knowledge into deep topic modeling
* TopicKG is extended to TopicKGA that allows the given domain knowledge
to-be-finetuned according to the target corpus
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% Topic-KG

% The generative model of corpus x, and the knowledge graph S and C
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% The ELBO

Fig1. Overview of TopicKG
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Knowledge-Aware Bayesian Deep Topic Model

% Topic-KGA

% TopicKG requires a perfect topic tree that matches the target corpos,
however, the knowledge graph may be

(1) noisy
(2) built on an ad hoc basis
(3) not closely related to the topic discovering task

% Graph adaptive technique

A=A+ A"

A = Softmax(k(E ., E.A))

:.‘:ﬁ%;.\."-
},. NEURAL INFORMATION
%t 3 PROCESSING SYSTEMS
N

&b

XIDIAN UNIVERSITY

T5N, TEEFHRAS

TEXAS

The University of Texas at Austin



s Experiment

% Topic quality

20NG(TC) RE(TC) RCV2(TC) Reuters(TC)
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Figure 3: Topic coherence (TC, top row), topic diversity (TD, middle row), and word embedding coherence
.\’é,’ L (WE, bottom row) results for various deep topic models on four datasets. In each subfigure, the horizontal axis
533 OF indicates the layer index of the topics. For all metrics, higher is better.
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s Experiment

% Document representation

Table 1: Micro F1 and Macro F1 score of different models on three datasets. The digits in brackets
indicate the number of layers. Micro F1 /Macro F1.

Model | 20NG | RS | RCV2

ETM 50.25 £0.42/47.44 £0.21 | 88.10 £0.45/59.67 £0.24 | 68.63 +0.15/24.40 +0.11
CombinedTM | 56.43 £0.14/54.95 £0.11 | 93.69 +0.09 /84.14 +0.10 | 84.85 +0.11/51.47 +£0.21
Sawtooth(3) | 52.41 £0.08/51.53 £0.10 | 90.04 +£0.15/78.84 £0.21 | 82.54 +0.11/49.25 +0.10
TopicNet(3) | 55.16 £0.22/54.78 £0.34 | 89.95 +£0.17/64.15 £0.16 | 84.15 £0.25/50.37 +£0.22
TopicKG(3) | 55.73 £0.15/54.48 £0.08 | 93.6 £0.05/83.32 £0.07 | 84.75 £0.16/50.51 +£0.41
TopicKGA(3) | 58.63 £0.15/57.90 +0.10 | 93.70 +0.52/84.50 +0.11 | 85.34 +0.14/52.35 +1.10

ETM 47.79 £0.12/44.19 £1.01 | 86.54 £0.84/59.88 £1.11 | 63.77 £0.14/21.44 +1.04
CombinedTM | 58.16 +£0.15/58.10 +0.10 | 93.50 +0.13 /84.84 pmO0.11 | 82.91 +0.11/48.17 £0.05
Sawtooth(7) | 53.71 £0.11/53.02 £0.47 | 92.86 +0.07/82.54 £0.41 | 82.46 £0.15/49.34 +0.34
TopicNet(7) | 56.13 £0.19/55.41 £0.39 | 90.65 +£0.00/66.57 £0.00 | 82.81 +0.00 /49.44 +0.00
TopicKG(7) | 56.32 +0.12/57.35 £0.04 | 94.04 +0.12/85.04 £0.11 | 82.48 +0.11/48.24 £0.09
TopicKGA(7) | 60.04 +£0.34/59.12 +0.13 | 94.10 +0.08 / 85.50 +0.10 | 83.08 +0.23 / 50.50 +0.08
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s Experiment

% The learned topic hierarchies

matter . matter
L
water, air, tin, oil, 6 Layer water, air, tin, oil,
nuclear, silver, food, 2tk Layer nuclear, silver, food,
world world
1tk Layer
0 ‘e . ‘e
.‘.' ... ..‘. .. .

o

ill_health vehicle ill_health vehicle ] topic )

health, medical, vehicle, car, launch, health, brain, rick, vehidle, bike, cars, 1 safe, burbo, auto, :

_ study, cold, bike, bus, motorcycle doctors, cancer, medical spacecraft, launch | driver, oil, roads, cars,

disease, std, cancer, spacecraft, rocket disease, patients rocket roads, miles 1 cup !

patients |}
/\ r-m - e s

: I illness = |
illness infection rocker ichica , topic #1 ) infection rocker viehicle | | topic #2 |
health, nec, | | health, std, | | spacecraft, bike, car, | rick, heart, | health, health, spacecraft, bike, car, | | honda,
cold, disease, launch, bus, | eat, water, ! brain, doctor, ocket, launch| | motorcycle,| | dealer, !
cancer, aids, hiv, | |shuttle, rocket,| | motorcycle, | doctors, | cancer, disease, hiv, shuttle, cars, auto, | | roads, bmw, |
disease, medical, technical, ine, , disease, | disease, medical, technical, miles, | ars, safe, |
patients, medicine, satellite, miles, turbo med, body, | | cold, hurt, drug, station, engine, | = ford, |
hospital, patient, astronomy, i Idiet, effects, | hospital, patient, astronomy, turbo, oil, driving, |
insurance treatment sky L risk ! insurance treatment sky driving L ba:te:y 1
(a) (b)

s
2° " NEURAL INFORMATION e
-,Iv . PROCESSING SYSTEMS w
o y

The University of Texas at Austin



Knowledge-Aware Bayesian Deep Topic Model

Thank you for listening
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