

KAIST Industrial & Systems Engineering Dept. APPLIED ARTIFICIAL INTELLIGENCE LAB

Maximum Likelihood Training of Implicit Nonlinear Diffusion Models

Dongjun Kim*1Byeonghu Na*1Se JDongsoo Lee 2Wanmo Kang1II-CI

Se Jung Kwon² Il-Chul Moon^{1 3}

We introduce a Nonlinear Diffusion Model

We introduce a Nonlinear Diffusion Model

	Discrete Diffusion	Continuous Diffusion	
Linear	NCSN/DDPM	NCSN++/DDPM++	
Semi-Linear	SBP	-	
Fully Nonlinear	DiffFlow	INDM	

Reverse & Generative Diffusion

KAIST

Nonlinear Diffusion on Data Space

Linear Forward Latent Diffusion:
$$\left\{z_t^{\phi}\right\}_{t=0}^T$$
 ϕ : flow parameter

Linear Forward Latent Diffusion:
$$\left\{z_t^{\phi}\right\}_{t=0}^T$$
 ϕ : flow parameter

Nonlinear Forward Data Diffusion:
$$\left\{x_t^{\phi} \coloneqq h_{\phi}^{-1}\left(z_t^{\phi}\right)\right\}_{t=0}^T$$
 ϕ : flow

Linear Reverse Latent Diffusion: $\{z_t^{\theta}\}_{t=0}^T$

$$\theta$$
: score parameter

Nonlinear Reverse Data Diffusion:
$$\left\{x_t^{\phi,\theta} \coloneqq h_{\phi}^{-1}(z_t^{\theta})\right\}_{t=0}^T$$
 $\left\{\phi: \text{ flow } \theta: \text{ score } \right\}_{t=0}^T$

Nonlinear Forward Data Diffusion:
$$\left\{x_t^{\phi} \coloneqq h_{\phi}^{-1}\left(z_t^{\phi}\right)\right\}_{t=0}^{T}$$
 ϕ : flow
Nonlinear Reverse Data Diffusion: $\left\{x_t^{\phi,\theta} \coloneqq h_{\phi}^{-1}\left(z_t^{\theta}\right)\right\}_{t=0}^{T}$ θ : score

Nonlinear Forward Data Diffusion:
$$\left\{x_t^{\phi} \coloneqq h_{\phi}^{-1}\left(z_t^{\phi}\right)\right\}_{t=0}^{T}$$
 ϕ : flow
Nonlinear Reverse Data Diffusion: $\left\{x_t^{\phi,\theta} \coloneqq h_{\phi}^{-1}\left(z_t^{\theta}\right)\right\}_{t=0}^{T}$ θ : score

Nonlinear Forward Data Diffusion:
$$\left\{x_t^{\phi} \coloneqq h_{\phi}^{-1}\left(z_t^{\phi}\right)\right\}_{t=0}^{T}$$
 ϕ : flow
Nonlinear Reverse Data Diffusion: $\left\{x_t^{\phi,\theta} \coloneqq h_{\phi}^{-1}\left(z_t^{\theta}\right)\right\}_{t=0}^{T}$ θ : score

Nonlinear Forward Data Diffusion:
$$\left\{x_t^{\phi} \coloneqq h_{\phi}^{-1}\left(z_t^{\phi}\right)\right\}_{t=0}^{T}$$
 ϕ : flow
Nonlinear Reverse Data Diffusion: $\left\{x_t^{\phi,\theta} \coloneqq h_{\phi}^{-1}\left(z_t^{\theta}\right)\right\}_{t=0}^{T}$ θ : score

- INDM is the first continuous fully nonlinear diffusion model
 - 1. INDM training is fast
 - 2. INDM training is MLE
 - 3. INDM sampling is robust
 - 4. INDM enables image-to-image translation

The learning curve of INDM is strictly under that of DDPM

Fast Training

Fast Training	MLE Training	Robust Sampling	Image-to-Image Translation

Original Loss (linear diffusion)

Original Loss (linear diffusion)

$$\int_{0}^{T} \lambda(t) \mathbb{E}[\|\nabla \log p_{t} - \mathbf{s}_{\theta}\|_{2}^{2}] dt$$

Original Loss (linear diffusion)

$$\int_0^T \lambda(t) \mathbb{E}[\|\nabla \log p_t - \mathbf{s}_{\theta}\|_2^2] \,\mathrm{d}t$$

Original Loss (linear diffusion)

$$\int_0^T \lambda(t) \mathbb{E}[\|\nabla \log p_t - \mathbf{s}_{\theta}\|_2^2] \,\mathrm{d}t$$

$$\int_{0}^{T} \lambda(t) \mathbb{E}[\|\nabla \log p_{t}^{\phi} - \mathbf{s}_{\theta}\|_{2}^{2}] dt$$

Original Loss (linear diffusion)

$$\int_0^T \lambda(t) \mathbb{E}[\|\nabla \log p_t - \mathbf{s}_{\theta}\|_2^2] \,\mathrm{d}t$$

$$\int_0^T \lambda(t) \mathbb{E} \left[\nabla \log p_t^{\phi} - \mathbf{s}_{\theta} \|_2^2 \right] \mathrm{d}t$$

Original Loss (linear diffusion)

$$\int_0^T \lambda(t) \mathbb{E}[\|\nabla \log p_t - \mathbf{s}_{\theta}\|_2^2] \,\mathrm{d}t$$

$$\int_{0}^{T} \lambda(t) \mathbb{E}[\|\nabla \log p_{t}^{\phi} - \mathbf{s}_{\theta}\|_{2}^{2}] dt$$

Original Loss (linear diffusion)

$$\int_0^T \lambda(t) \mathbb{E}[\|\nabla \log p_t - \mathbf{s}_{\theta}\|_2^2] \,\mathrm{d}t$$

Our Loss (nonlinear diffusion)

$$\int_0^T \lambda(t) \mathbb{E} \left[\left\| \nabla \log p_t^{\phi} + \mathbf{s}_{\theta} \right\|_2^2 \right] \mathrm{d}t$$

Bidirectional

Original Loss (linear diffusion)

$$\int_0^T \lambda(t) \mathbb{E}[\|\nabla \log p_t - \mathbf{s}_{\theta}\|_2^2] \,\mathrm{d}t$$

Our Loss (nonlinear diffusion)

$$\int_0^T \lambda(t) \mathbb{E} \left[\left\| \nabla \log p_t^{\phi} - \mathbf{s}_{\theta} \right\|_2^2 \right] \mathrm{d}t$$

Bidirectional

Fast Training

The learning curve of INDM is close to the line of MLE training

MLE Training (!)

The sample quality of INDM is robust on the number of discretization steps

Robust Sampling

$$\|p_r - p_g\|_{TV} \le E_{prior} + E_{disc} + E_{est}$$

Theorem. If p_g is sample distribution $\|p_r - p_q\|_{TV} \le E_{prior} + E_{disc} + E_{est}$

$$\|\mathbf{p}_r - p_g\|_{TV} \le E_{prior} + E_{disc} + E_{est}$$

$$\|p_r - p_g\|_{TV} \le \frac{E_{prior}}{E_{prior}} + E_{disc} + E_{est}$$

$$\|p_r - p_g\|_{TV} \le E_{prior} + E_{disc} + E_{est}$$

$$\|p_r - p_g\|_{TV} \le E_{prior} + E_{disc} + E_{est}$$

Theorem. If p_g is sample distribution $||p_r - p_g||_{TV} \leq E_{prior} + E_{disc} + E_{est}$ $\sum E_{disc}(INDM) < E_{disc}(DDPM)$

Robust Sampling

 $\mathbf{Dog} \leftrightarrow \mathbf{Cat}$

INDM is a Nonlinear Diffusion Model

Future Works of INDM

- APPLIED ARTIFICIAL INTELLIGENCE LAB
- The motivation of nonlinear diffusion in high-dimensional dataset is not sufficient.
- The invertible transformation is modeled by a flow network, which is the speed/performance bottleneck after all.
- The destined variable of INDM is not a standard Gaussian in general, and this difference could arise a qualitatively different behavior.
- The nonlinearity is purely subject to the optimization, and the behavior of the trained forward diffusion is not investigated or controllable, so far.
- The drift and volatility coefficients are highly entangled with a flow model of which flexibility is potentially limited.
- The scope of nonlinearity needs to be examined more clearly.
- The nonlinear diffusion has not been tested for the higher-dimensional dataset, such as ImageNet-256.
- The flow seems not take any role other than colorization, and further research on the role of flow network remains.
- The model works better with the pre-training of linear diffusions.
- The further analysis on why INDM fails to converge, if we use Glow-based flows instead of ResNet-based flows, is left.
- Whether or not the essential input information is retained longer than the linear diffusion with INDM to make it use in the meaningful latent extraction.

Thank you

Linear Diffusion on Latent Space + *Invertible* Transformation

