

Human-AI Collaborative Bayesian Optimisation

In 36th International Conference on Neural Information Processing Systems (NeurIPS) 2022

Authors: Arun Kumar A V, Santu Rana, Alistair Shilton, Svetha Venkatesh

o Applications of AI systems – omnipresent but Sub-optimal

How do we improve the performance in such systems??

Applications of AI systems – omnipresent but Sub-optimal

How do we improve the performance in such systems??

- Human-AI collaborative systems
- O Harness the complementary strengths of AI and humans
 - Quantitative abilities of AI systems
 - Cognitive capabilities of humans

Human-AI Collaborative Systems

- o Bayesian Optimisation (BO) based methods?
 - Assumes an expert performing the experimentations
 - Incorporation of the expert knowledge

Human-AI Collaborative Systems

- Bayesian Optimisation (BO) based methods?
 - Assumes an expert performing the experimentations
 - Incorporation of the expert knowledge

- o Expert knowledge in Bayesian optimisation
 - Input space characteristics smoothness
 - Trends monotonicity, unimodality

Human-AI Collaborative Systems

- Bayesian Optimisation (BO) based methods?
 - Assumes an expert performing the experimentations
 - Incorporation of the expert knowledge

- Expert knowledge in Bayesian optimisation
 - Input space characteristics smoothness
 - Trends monotonicity, unimodality

Approach

How to incorporate such fluid knowledge in Bayesian optimisation??

Human-AI Collaborative Bayesian Optimisation

- Human-AI Teaming (HAT) Bayesian optimisation
 - Correction of the current recommendation
 - Specification of good regions and bad regions
- O These tasks do not add a significant overhead on the expert
- Extra expert information incorporated into the model selection

Human-AI Teaming – Rectifying Recommendation (HAT-RR)

- \circ Correct previously suggested observation \mathcal{X}^A
- \circ Expert observations \mathcal{X}^E
 - Reflects full or partial knowledge of the kernel
- Model selection process

$$\Theta^* = \underset{\Theta}{\operatorname{argmax}} \log \mathcal{L}$$

Human-AI Teaming – Rectifying Recommendation (HAT-RR)

- \circ Correct previously suggested observation \mathcal{X}^A
- o Expert observations \mathcal{X}^E
 - Reflects full or partial knowledge of the kernel
- Model selection process

$$\Theta^* = \underset{\Theta}{\operatorname{argmax}} \log \mathcal{L}$$

such that
$$u_{\text{GP-UCB}}(\mathbf{x}_i^E | \mathcal{D}_{i-1}) > u_{\text{GP-UCB}}(\mathbf{x}_i^A | \mathcal{D}_{i-1})$$

$$\forall \, \mathbf{x}_i^A \in \mathcal{X}^A, \, \mathbf{x}_i^E \in \mathcal{X}^E, \, i \in H$$

$$\mathcal{D} = \{(\mathbf{x}, y = f(\mathbf{x}))\}$$

Human-AI Teaming – Distance Maximisation (HAT-DM)

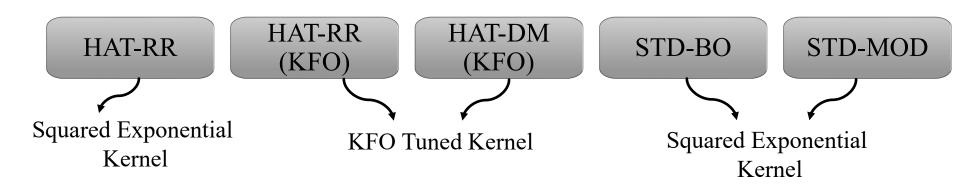
- Expert inputs good and bad regions reflection of expert's acquisition function
- A bi-objective optimisation problem
 - 1. Maximise log-likelihood $\Theta^* = \operatorname{argmax} \log \mathcal{L}$
 - 2. Define a new co-objective with constraints

Human-AI Teaming – Distance Maximisation (HAT-DM)

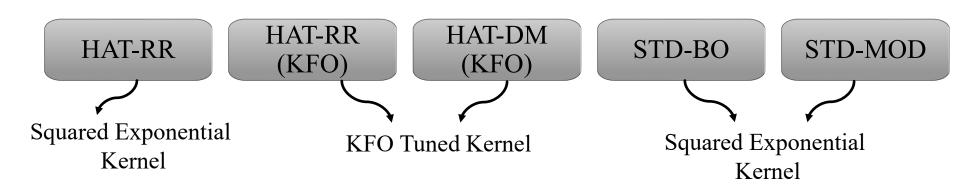
- Expert inputs good and bad regions reflection of expert's acquisition function
- o A bi-objective optimisation problem
 - 1. Maximise log-likelihood $\Theta^* = \operatorname{argmax} \log \mathcal{L}$
 - 2. Define a new co-objective with constraints

$$\Theta^{+} = \underset{start \leftarrow \Theta^{*}}{\operatorname{argmax}} \sum_{i \in H} (u_{\text{GP-UCB}}(\mathbf{x}_{i}^{g} | \mathcal{D}_{i-1}) - u_{\text{GP-UCB}}(\mathbf{x}_{i}^{b} | \mathcal{D}_{i-1}))$$
such that $(\log \mathcal{L})_{\Theta^{+}} \geq \Delta(\log \mathcal{L})_{\Theta^{*}}$
Compromising Threshold

Variants for Comparisons



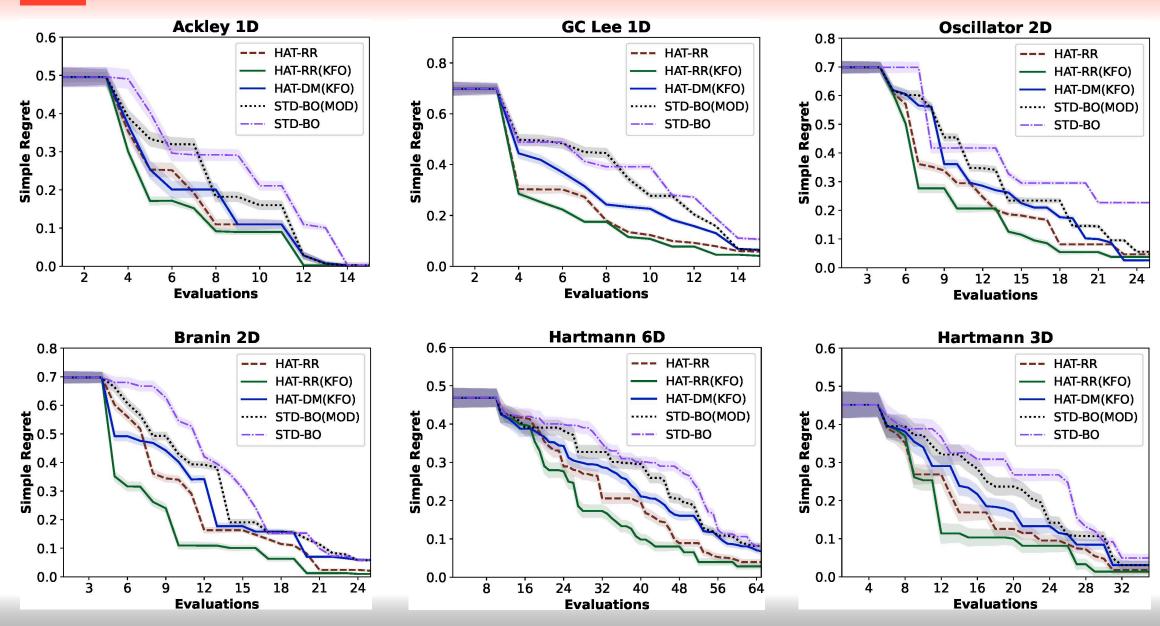
Variants for Comparisons



Synthetic Experiments

- Multi-dimensional synthetic benchmark functions
 - Ackley 1D, Gramacy & Lee 1D, Branin 2D, Oscillator 2D, Hartmann 3D and 5D
- \circ Plot simple regret \hat{r}_t^+ after $10 \times d + 5$ iterations

$$\hat{r}_t^+ = f(\mathbf{x}^*) - \max_{\mathbf{x}_t \in \mathcal{D}_{1:t}} f(\mathbf{x}_t)$$



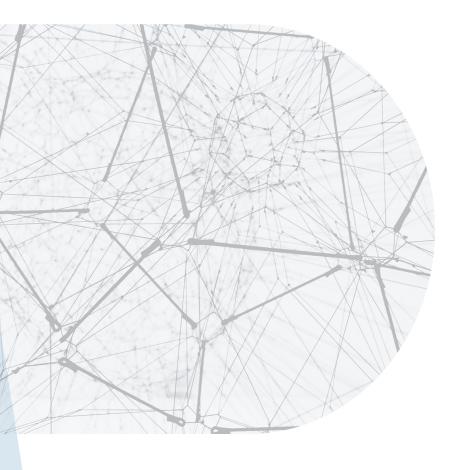
Real-world Experiments

- o Multi-dimensional datasets from UCI repository: 80/20 Train/Test splits
- o C-SVM with RBF kernel to minimise classification error.

Instances	STD-BO	STD-BO (MOD)	HAT-RR	HAT-RR (KFO)	HAT-DM (KFO)
WDBC	1.5 ± 0.5	1.24 ± 0.2	0.98 ± 0.2	0.60 ± 0.75	0.95 ± 0.45
Ionosphere	8.9 ± 0.2	6.02 ± 0.6	$oldsymbol{5.15} \pm oldsymbol{0.4}$	5.25 ± 0.10	6.21 ± 0.81
Sonar	8.21 ± 0.9	8.44 ± 0.2	6.46 ± 0.3	6.11 ± 0.37	6.84 ± 0.92
Heart	11.7 ± 0.9	11.10 ± 1.4	10.2 ± 0.3	10.25 ± 0.41	10.97 ± 0.75
Seeds	3.3 ± 0.4	2.58 ± 0.8	2.8 ± 0.14	2.51 ± 0.65	2.63 ± 0.47
Wine	0	0	0	0	0
Credit	18.1 ± 1.3	14.52 ± 0.6	12.7 ± 1.3	12.42 ± 0.60	12.95 ± 0.78
Biodeg	16.8 ± 1.9	15.05 ± 0.6	$13.4 {\pm} 0.2$	13.88 ± 0.42	14.09 ± 1.83
Car	1.9 ± 0.5	0.39 ± 0.7	0.21 ± 0.1	0.35 ± 0.17	0.30 ± 0.53
Ecoli	2.1 ± 0.6	2.01 ± 0.3	1.67 ± 0.2	$\boldsymbol{1.21 \pm 0.38}$	1.94 ± 0.64

Questions?

Email: aanjanapuravenk@deakin.edu.au



Thank You!!