Approximation with CNNs in Sobolev Space: with Applications to Classification

Guohao Shen*, Yuling Jiao*, Yuanyuan Lin † and Jian Huang †

NeurIPS 2022

Equal contribution* Corresponding authors[†]

CNN Approximation

Figure: Approximation, Estimation and Optimization.

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Table: A comparison of some	recent CNN	approximation results.
-----------------------------	------------	------------------------

	Network	Target function	Flexible filter length	Explicit prefactor	Low-dimensional Result
[7]	CNN	FNN	×	×	×
[6]	ConvResNet	FNN	\checkmark	×	×
[9]	CNN	Sobolev	\checkmark	×	×
[4]	CNN	Hölder	×	×	\checkmark
[5]	ConvResNet	Besov	\checkmark	×	\checkmark
This paper	CNN	Sobolev and Hölder	✓	\checkmark	✓

= 990

Convolutional neural networks

• A CNN $f_{CNN} : \mathcal{X} \to \mathbb{R}$ with L hidden layers:

$$f_{CNN}(x) = A_{L+1} \circ A_L \circ \cdots \circ A_2 \circ A_1(x)$$

• Convolutional layers:

- $A_i(x) = \sigma(W_i^c x + b_i^c)$ with ReLU activation σ .
- **②** Sparse Toeplitz weight matrix $W_i^c \in \mathbb{R}^{d_i imes d_{i-1}}$ induced by
- **③** Convolutional filters $\{w_i^{(i)}\}_{i=0}^{s^{(i)}}$ with filter length $s^{(i)} \in \mathbb{N}^+$.
- **Objection** Bias vector $b_i^c \in \mathbb{R}^{d_i}$.

Downsampling layers

- **9** $A_i(x) = D_i(x) = (x_{jm_i})_{i=1}^{\lfloor d_{i-1}/m_i \rfloor}$ for any $x \in \mathbb{R}^{d_{i-1}}$.
- Ø Max Pooling, Average Pooling.
- **③** Scaling parameter $m_i \leq d_{i-1}$.
- Class of CNNs $\mathcal{F}_{CNN} = \{ f_{CNN} \text{ over all possible choice of } \{A_i\}_{i=1}^{L+1} \}.$
 - **(**) Total number of parameters S for networks in \mathcal{F}_{CNN}
 - 2 Min. and max. filter length s_{\min} and s_{\max} over convolutional layers

4 / 13

イロン イロン イヨン イヨン

Approximation in Sobolev space

Theorem 1 (Approximation on functions in Sobolev Space)

Assume $f \in W^{\beta,p}(\mathcal{X})$ with $1 \leq \beta \in \mathbb{N}_0$, $1 \leq p \leq \infty$ and $||f||_{W^{\beta,p}(\mathcal{X})} \leq B_0$. For any $M, N \in \mathbb{N}^+$, and for m = 0, 1, there exists a function $f_{CNN} \in \mathcal{F}_{CNN}$ with

$$\begin{split} L &\leq 42(\lfloor\beta\rfloor + 1)^2 M \lceil \log_2(8M) \rceil \lceil \frac{W-1}{s_{\min} - 1} \rceil, \quad 2 \leq s_{\min} \leq s_{\max} \leq \mathcal{W}, \quad \mathcal{S} \leq 8\mathcal{W}L, \\ \mathcal{W} &= 38^2(\lfloor\beta\rfloor + 1)^4 d^{2\lfloor\beta\rfloor + 2} N^2 \lceil \log_2(8N) \rceil^2, \end{split}$$

such that
$$\|f - f_{CNN}\|_{W^{m,p}(\mathcal{X})} \leq C_0(d,\beta,p)(NM)^{-2(\beta-m)/d}$$

where $C_0(d,\beta,p) = 37 \cdot 2^{2\beta+2d/p} B_0^2(\beta+1)^3 \times \{\pi^{-d/2} \Gamma(d/2+1)\}^{2/p+1} (1+2\sqrt{d})^d d^{4\beta}$.

Sobolev class of functions

 $W^{\beta,p}(\mathcal{X}) = \{ f \in L^p(\mathcal{X}) : D^{\alpha}f \in L^p(\mathcal{X}) \text{ for all } \alpha \in \mathbb{N}_0^d \text{ with } \|\alpha\|_1 \leq \beta \}.$

• For
$$1 \leq p < \infty$$
 define $\|f\|_{W^{m,p}(\mathcal{X})} := \left(\sum_{0 \leq \|\alpha\|_1 \leq m} \|D^{\alpha}f\|_{L^p(\mathcal{X})}^p\right)^{1/p}$.

 $each Define ||f||_{W^{m,\infty}(\mathcal{X})} := \max_{0 \le ||\alpha||_1 \le m} ||D^{\alpha}f||_{L^{\infty}(\mathcal{X})}.$

<ロ> <回> <回> <回> < 回> < 回> < 回</p>

Approximation with a lower-dimensional support

Assumption 1 (Approximate Manifolds)

The distribution of X is supported on \mathcal{M}_{ρ} , a ρ -neighborhood of $\mathcal{M} \subset \mathcal{X}$, where \mathcal{M} is a compact $d_{\mathcal{M}}$ -dimensional Riemannian submanifold and $\mathcal{M}_{\rho} = \{x \in \mathcal{X} : \inf\{\|x - y\|_2 : y \in \mathcal{M}\} \le \rho\}$ for $\rho \in (0, 1)$.

Theorem 2 (Improved CNN Approximation)

Suppose Assumption 1 holds, $f \in W^{\beta,\infty}(\mathcal{X})$ and the distribution of X is absolutely continuous w.r.t the Lebesgue measure. For $\varepsilon \in (0,1)$, let

$$d_{\varepsilon} = O(d_{\mathcal{M}}\varepsilon^{-2}\log(d/\varepsilon)), \quad \rho_{\varepsilon} = C_2 \frac{(NM)^{-2\beta/d_{\varepsilon}}(\beta+1)^2 \sqrt{d} d_{\varepsilon}^{3\beta/2}}{[\sqrt{d/d_{\varepsilon}}+1-\varepsilon](1-\varepsilon)^{\beta-1}}$$

Then, for any $M, N \in \mathbb{N}^+$, there exists a CNN $f_{CNN} \in \mathcal{F}_{CNN}$ with L, S specified in Theorem 1 with $\mathcal{W} = 38^2(\lfloor \beta \rfloor + 1)^4 d_{\varepsilon}^{2\lfloor \beta \rfloor + 2} N^2 \lceil \log_2(8N) \rceil^2$ such that

$$\mathbb{E}|f(X) - f_{CNN}(X)| \leq C(d,\beta)(NM)^{-2\beta/d_{\varepsilon}}$$

for $\rho \leq \rho_{\varepsilon}$ where $C(d,\beta) = (18+C_2)B_0(1-\varepsilon)^{-\beta}(\beta+1)^2 d_{\varepsilon}^{3\beta/2}$.

A Toy Example

• Target function: $f_0(x) = 2\sin(2\pi x_1) + 4(x_2)^3$, $x \in [0, 1]^2$.

Table: Approximation errors by CNNs with different filter lengths and depths.

Approximation error		Filter length				
$L_1(L_2)$		20	50	100	200	
	1	0.807(0.969)	0.450(0.539)	0.139(0.186)	0.062(0.084)	
Hidden layers \downarrow	2	0.112(0.144)	0.055(0.070)	0.047(0.064)	0.025(0.037)	
	3	0.078(0.098)	0.051(0.070)	0.037(0.046)	0.032(0.045)	

э

A Toy Example

Figure: Heatmaps for the CNN approximations on the target function. The CNNs are designated with depth L = 1, 2, 3 and filter length s = 20, 50, 100, 200.

< ≣ → 8 / 13

イロト イヨト イヨト

Application to binary classifications

- Sample $\{(X_i, Y_i)\}_{i=1}^n$ from (X, Y) with $X \in \mathbb{R}^d$ and $Y \in \{1, -1\}$.
- Use Surrogate loss functions for 0-1 loss (or Misclassification loss).
- Given convex loss $\phi : \mathbb{R} \to [0, \infty)$. Risk $R(f) := \mathbb{E}\phi(Yf(X))$.
 - Risk minimizer

$$f_0 := \arg \min_{f \text{ measurable}} \mathbb{E}\phi(Yf(X)).$$

e Empirical risk minimizer

$$\hat{f}_n \in \arg\min_{f \in \mathcal{F}_{CNN}} \frac{1}{n} \sum_{i=1}^n \phi(\mathbf{Y}_i f(\mathbf{X}_i)).$$
(1)

• The classifier $\hat{h}_n(x) := \operatorname{sign}(\hat{f}_n(x))$ and $h_0(x) := \operatorname{sign}(f_0(x))$.

э

ヘロン 人間 とくほど 人間と

Application to binary classifications

• Self-calibration [7]:

 $\psi(\mathbb{P}(\hat{h}_n(X) \neq Y) - \mathbb{P}(h_0(X) \neq Y)) \leq R(\hat{f}_n) - R(f_0).$

• Focus on the excess risk: $R(\hat{f}_n) - R(f_0)$.

T	able	Surrogate	loce	minimizer	and	self calibration	2/2
	able.	Junogate	1055,	mmmzer	anu	sen-campiation	φ .

	$\phi(a)$	$f_0(x)$	$\psi(heta)$	$\psi^{-1}(\theta)$	
Least squares	$(1 - a)^2$	$2\eta-1$	θ^2	$\sqrt{ heta}$	
SVM	$\max\{1-\textit{a},0\}$	$\operatorname{sign}(2\eta-1)$	heta	heta	
Exponential	$\exp(-a)$	$\frac{1}{2}\log(\frac{\eta}{1-\eta})$	$1-\sqrt{1- heta^2}$	$\sqrt{1-(1- heta)^2}$	
Logistic	$\log\{1+\exp(-a)\}$	$\log(\frac{\eta}{1-\eta})$	θ^2	$\sqrt{ heta}$	
Cross entropy	$-\log\{0.5+a\}$	$\eta-$ 0.5	θ^2	$\sqrt{ heta}$	
Note: $\eta(x) = \mathbb{P}(Y = 1 X = x).$					

10 / 13

э.

Theorem 3 (Non-asymptotic excess ϕ -risk bound)

Suppose $f_0 \in W^{\beta,\infty}([0,1]^d, B_0)$ For any $M, N \in \mathbb{N}^+$, let depth L and filter lengths of \mathcal{F}_{CNN} specified as in Theorem 1. Under mild conditions, for any $\delta \in (0,1)$, with probability $\geq 1 - \delta$, the ERM \hat{f}_n defined in (1) satisfies

$$R(\hat{f}_n) - R(f_0) \le \frac{2\phi_B}{\sqrt{n}} \left(C_0 \sqrt{SL \log(S) \log(n)} + \sqrt{\log(1/\delta)} \right)$$
(2)

$$+ C(d,\beta)(NM)^{-2\beta/d} + \Delta_{\phi}(T).$$
(3)

where $C(d, \beta) = 18B_{\phi}B_0(\beta + 1)^2 d^{\beta + (\beta \vee 1)/2}$, $C_0 > 0$ is a universal constant, and truncation error $\Delta_{\phi}(T) := \inf_{|a| \leq T} \phi(a) - \inf_{a \in Ran(f_0)} \phi(a)$ where $Ran(f_0)$ is the range of f_0 . Additionally, if conditions in Theorem 2 holds, the approximation error (3) is improved to be $C(d, \beta)(NM)^{-2\beta/d_{\epsilon}} + \Delta_{\phi}(T)$ where d_{ϵ} is defined in Theorem 2.

<ロ> <回> <回> <回> < 回> < 回> < 回</p>

Application to binary classifications

Table: Excess Misclassification Error

Hypothesis space	Loss	Condition	Rate	Reference		
Measurable functions	0-1 loss	θ -noise condition; α -Hölder decision boundary	$n^{-rac{eta(heta+1)}{eta(heta+2)+(d-1) heta}}$	Theorem 1 in [8]		
DNN	Hinge		$n^{-rac{eta(heta+1)}{eta(heta+2)+(d-1)(heta+1)}}$	Theorem 1 in [3]		
	1-norm	$f_0 \in W^{\beta,p}(\mathbb{S}^{d-1})$	$n^{-rac{eta}{eta(2- au)+2\gamma(d-1)}}$	Theorem 2 in [2]		
	p-norm		$n^{-rac{peta}{2peta(2- au)+2p(\gamma+1)(d-1)}}$			
Deep CNNs	2-norm	$f_0 \in W^{eta,p}(\mathbb{S}^{d-1});$ heta-noise condition;	$n^{-\frac{2\beta\theta}{(2+\theta)((\gamma+1)(d-1)+2\beta)}}$	Theorem 3 in [2]		
	Hinge	$egin{array}{c} heta$ -noise condition; $f_0 \in W^{eta, p}([0, 1]^d) \end{array}$	$n^{-rac{eta(heta+1)}{d+2eta(heta+1)}}$			
	Logistic	$f_0\in \textit{W}^{\beta,p}([0,1]^d)$	$n^{-rac{eta}{2d+4eta}}$	This paper		
	Exponential	$f_0\in W^{eta, p}([0,1]^d)$	$n^{-rac{eta}{2d+4eta}}$			
	Least square	$f_0\in W^{eta, p}([0,1]^d)$	$n^{-rac{4eta}{3d+16eta}}$			
The p-norm hinge loss: $\phi(u) = \max\{1 - u, 0\}^p$ with $p > 1$ (it is hinge loss when $p = 1$).						

NeurIPS 2022

イロト イヨト イヨト

References

- P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. J. Amer. Statist. Assoc., 101(473):138–156, 2006.
- [2] H. Feng, S. Huang, and D.-X. Zhou. Generalization analysis of cnns for classification on spheres. *IEEE Transactions on Neural Networks and Learning Systems*, 2021.
- [3] Y. Kim, I. Ohn, and D. Kim. Fast convergence rates of deep neural networks for classification. *Neural Networks*, 138:179–197, 2021.
- [4] M. Kohler and S. Langer. Statistical theory for image classification using deep convolutional neural networks with cross-entropy loss. arXiv preprint arXiv:2011.13602, 2020.
- [5] H. Liu, M. Chen, T. Zhao, and W. Liao. Besov function approximation and binary classification on low-dimensional manifolds using convolutional residual networks. In *International Conference on Machine Learning*, pages 6770–6780. PMLR, 2021.
- [6] K. Oono and T. Suzuki. Approximation and non-parametric estimation of resnet-type convolutional neural networks. In *International Conference on Machine Learning*, pages 4922–4931. PMLR, 2019.
- [7] P. Petersen and F. Voigtlaender. Equivalence of approximation by convolutional neural networks and fully-connected networks. *Proceedings of the American Mathematical Society*, 148(4):1567–1581, 2020.
- [8] A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32 (1):135–166, 2004.
- [9] D.-X. Zhou. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal., 48(2):787–794, 2020.

э

Thank you!

2