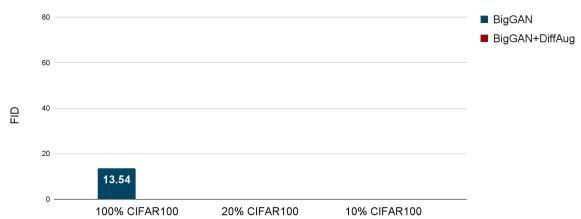


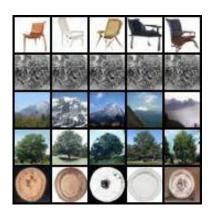
DigGAN: Discriminator gradlent Gap Regularization for GAN Training with Limited Data

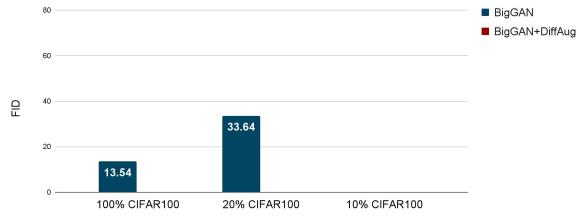
Tiantian Fang, Ruoyu Sun, Alex Schwing

GAN training with limited data

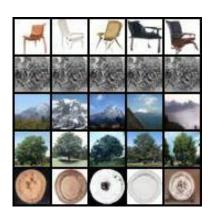


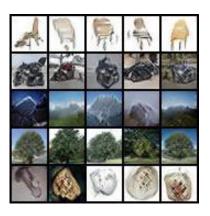
GAN training with limited data

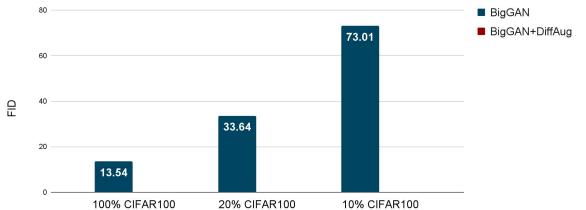




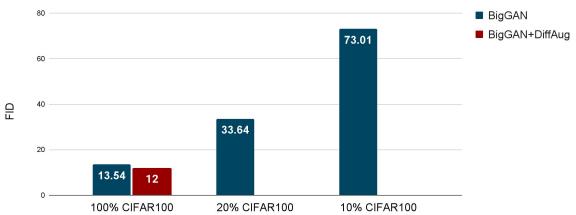
GAN training with limited data



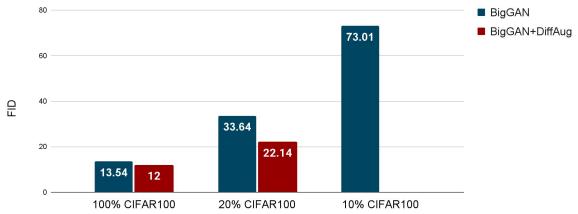




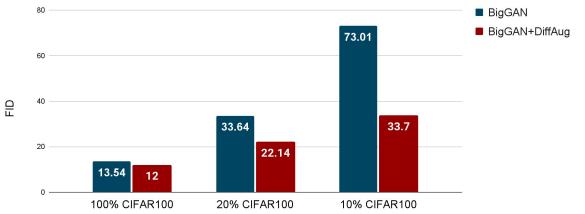
Data augmentation benefit is limited



Data augmentation benefit is limited



Data augmentation benefit is limited

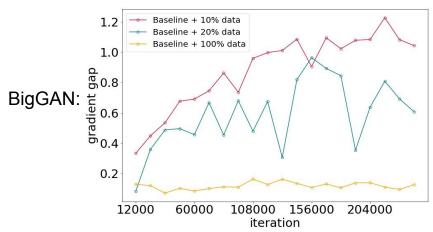


- The norm of the gradient of a discriminator's prediction w.r.t. real images
- The norm of the gradient of a discriminator's prediction w.r.t. generated images

$$R(D, x_R, x_F) = \left(\left\| \frac{\partial D}{\partial x_R} \right\|_2 - \left\| \frac{\partial D}{\partial x_F} \right\|_2 \right)^2$$

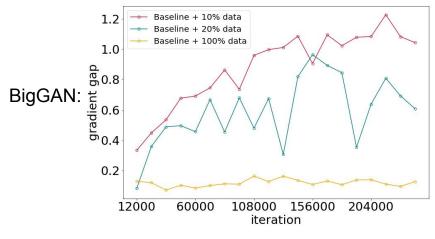
- The norm of the gradient of a discriminator's prediction w.r.t. real images
- The norm of the gradient of a discriminator's prediction w.r.t. generated images

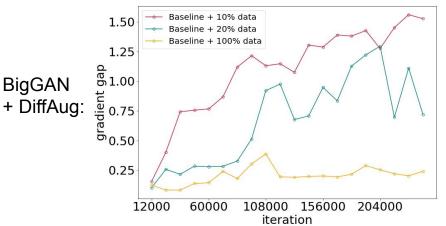
$$R(D, x_R, x_F) = \left(\left\| \frac{\partial D}{\partial x_R} \right\|_2 - \left\| \frac{\partial D}{\partial x_F} \right\|_2 \right)^2$$



- The norm of the gradient of a discriminator's prediction w.r.t. real images
- The norm of the gradient of a discriminator's prediction w.r.t. generated images

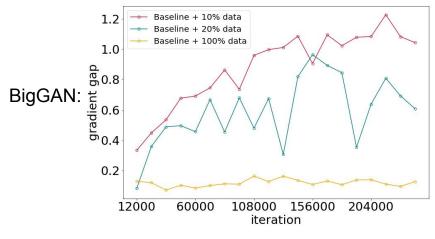
$$R(D, x_R, x_F) = \left(\left\| \frac{\partial D}{\partial x_R} \right\|_2 - \left\| \frac{\partial D}{\partial x_F} \right\|_2 \right)^2$$

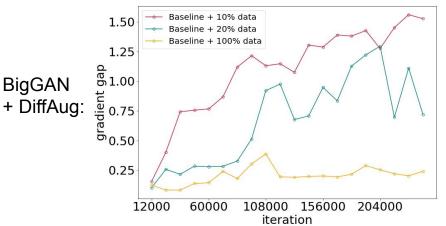


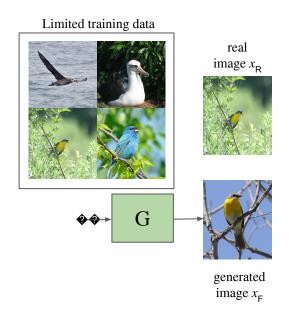


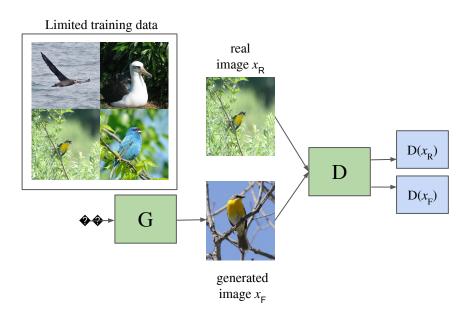
- The norm of the gradient of a discriminator's prediction w.r.t. real images
- The norm of the gradient of a discriminator's prediction w.r.t. generated images

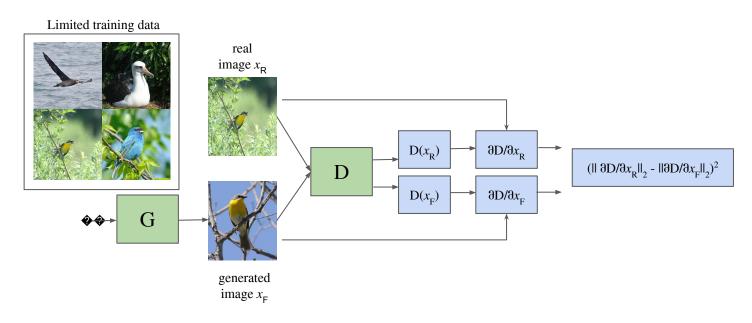
$$R(D, x_R, x_F) = \left(\left\| \frac{\partial D}{\partial x_R} \right\|_2 - \left\| \frac{\partial D}{\partial x_F} \right\|_2 \right)^2$$

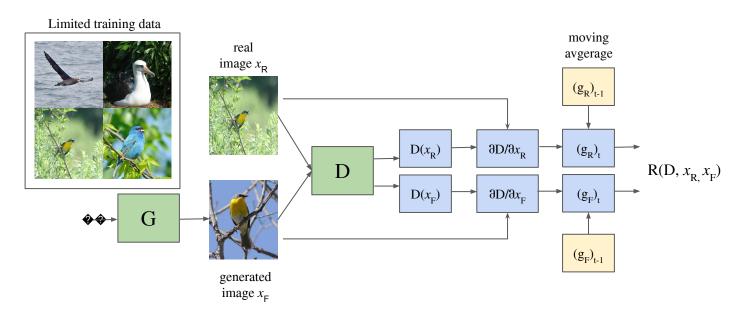










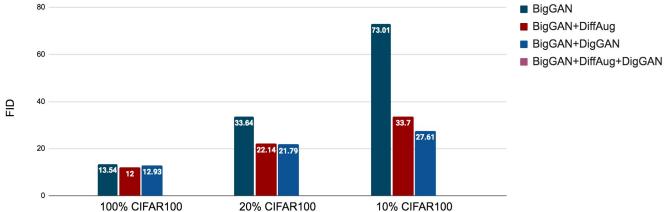


Intuition for DigGAN Regularizer and Attractors

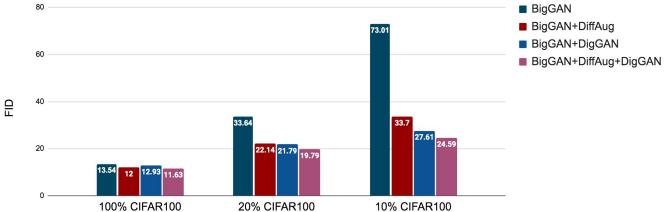
Compared to Vanilla GANs, DigGAN shows empirical advantages:

- Avoids getting trapped in bad local attractors
- Escapes from bad local attractors even if starting at local attractors

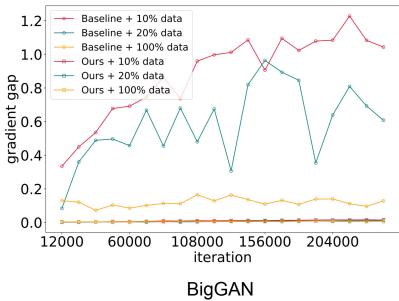
Results: CIFAR-100



Results: CIFAR-100



Results: CIFAR-100



AN BigGAN + DiffAug

1.25

gradient gap 0.75 0.50

0.25

0.00

12000

Baseline + 10% data

Baseline + 20% data

Ours + 10% data

Ours + 20% data

Ours + 100% data

60000

108000 156000

iteration

204000

Baseline + 100% data

Results

	100% Tiny	50% Tiny	10% Tiny	100%	50%
	ImageNet	ImageNet	ImageNet	CUB-200	CUB-200
BigGAN	31.92	43.45	130.77	20.15	48.67
BigGAN+ R_{LC} [51]	28.11	36.11	121.16	40.37	98.38
BigGAN + DigGAN (ours)	17.76	24.63	84.27	14.45	23.20
$\begin{array}{c} \textbf{BigGAN + DiffAug} \\ \textbf{BigGAN+} R_{LC} \text{ [51]+DiffAug} \\ \textbf{BigGAN + DiffAug + DigGAN (ours)} \end{array}$	16.33	24.50	95.40	13.49	24.35
	16.30	23.67	83.76	12.81	23.49
	14.84	22.66	51.18	11.58	21.12

Table 3: Fréchet Inception distance (FID) for BigGAN with Tiny-ImageNet and CUB-200.

100% Tiny-ImageNet

50% Tiny-ImageNet

100% CUB200

50% CUB200

Results

	100-shot Obama	100-shot grumpy cat	AnimalFace Dog	AnimalFace Cat
StyleGAN+ADA	49.78	27.34	66.25	41.40
StyleGAN+ADA+DigGAN	41.34	26.75	59.00	37.61

Table 4: Fréchet Inception distance (FID) for StyleGAN2 with ADA on low-shot datasets.

