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Provable Model-Based Reinforcement Learning

Different from greedy algorithms, provable MBRL often leverages
the uncertainty:
− Optimism in the Face of Uncertainty (OFU)

πt = argmax
π

max
ft∈Ft

V ft
π . (1)

− Posterior Sampling RL (or Thompson Sampling)

ft ∼ ϕ(·|Dt), πt = argmax
π

V ft
π . (2)

Sublinear regret Õ(
√

dT ). Model complexity d capture how
effectively the observed samples can extrapolate to unobserved
transitions.
Theorem 1. (Eluder Dimension of Nonlinear Models [Dong et al.
2021]) The eluder dimension of one-layer ReLU neural networks is
at least Ω(ε−(d−1)), where d is the state-action dimension.
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Limitations

• Assumption on the restricted model complexity is strong.
Nonlinear model complexity is exponential in dimension.

• Over-exploration. Intuition: Explore regions with higher
uncertainty and the optimistic/sampled model can be
unrealistic.

• Policy is optimized for uncertainty elimination, not for value
improvement. Each step only eliminates a small portion of
uncertainty.
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Conservative Dual Policy Optimization

Sampling in PSRL is harmful. Can we abandon sampling while still
provably exploring?
Selecting a reference model and optimizing a policy w.r.t. it
resembles the sampling-then-optimization procedure in PSRL,
while offering more stability when the reference is steady.

• Referential Update.

qt = argmax
q

V f̂ LS
tq

• Constrained Conservative Update.

πt = argmax
π

E
[
V ft
π

∣∣Ht
]
, s.t. E

s∼νqt

[
DTV

(
πt(·|s), qt(·|s)

)]
≤ η
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Analysis

Theorem 2. [CDPO Matches PSRL in BayesRegret] Let πPSRL be
the policy of any posterior sampling algorithm for reinforcement
learning optimized by (2). If the BayesRegret bound of πPSRL

satisfies that for any T > 0, BayesRegret(T , πPSRL, ϕ) ≤ D, then
for all T > 0, we have for the CDPO policy πCDPO that
BayesRegret(T , πCDPO, ϕ) ≤ 3D.
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Analysis

CDPO satisfies the following properties simultaneously:
• Global optimal with sublinear regret.
• Monotonic policy value improvement.

Theorem 3. [Policy Iterative Improvement] Suppose we have
∥f̃ (·, ·)∥ ≤ C for f̃ ∈ F where the model class F is finite. Define
ι := maxs,a |Af ∗

π (s, a)|, where Af ∗
π is the advantage function defined

as Af ∗
π (s, a) := Qf ∗

π (s, a)− V f ∗
π (s). With probability at least 1 − δ,

the policy improvement between successive iterations is bounded by

J(πt)− J(πt−1) ≥ ∆(t)− (1 + κ) · 22γC2 ln(|F|/δ)
(1 − γ)H − 2ηι

1 − γ
,

where ∆(t) := Es∼ζ

[
V f̃t

qt (s)− V f̃t
qt−1(s)

]
≥ 0 due to the greediness

of qt .
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Analysis

Theorem 4.[Expected Regret of CDPO] Let N(F , α, ∥·∥2) be the
α-covering number of F . Denote dE := dimE (F ,T−1) for the
eluder dimension of F at precision 1/T . Under Lipschitz
assumptions, the cumulative expected regret of CDPO in T
iterations is bounded by

BayesRegret(T , π, ϕ) ≤ γT (3T − 5)L
(T − 1)(T − 2) ·

(
1 +

1
1 − γ

CdE + 4
√

TdEβ

)
+ 4γC ,

where L := E[Lt ] and

β := 8σ2 log
(

2N
(
F , 1/(T 2), ∥·∥2

)
T
)
+ 2

(
8C +

√
8σ2 log(8T 3)

)
/T .
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Tabular Experiments

Tabular N-Chain MDP:

Right actions are optimal, left actions are suboptimal, at each of
the N states.
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Tabular Experiments

Different Exploration Mechanisms in the tabular N-Chain MDPs:
CDPO gives more accurate and certain estimates only for the
optimal right actions, while PSRL explores both directions.

Over-exploration issue in PSRL: as long as the uncertainty contains
unrealistically large values, it can perform uninformative
exploration according to an inaccurate sampled model.
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Tabular Experiments

Although CDPO has much larger uncertainty for the suboptimal
left actions, its regret is lower.
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Mujoco Experiments

Exploration Efficiency with Nonlinear Model Class:

In higher dimensional tasks such as half-cheetah, CDPO achieves a
higher asymptotic value with faster convergence.
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Mujoco Experiments

Full Results:

Ablation Study:
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Thanks!
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