Constrained Langevin Algorithms with L-mixing External Random Variables

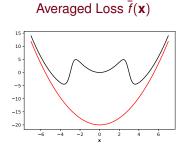
Yuping Zheng & Andrew Lamperski

Electrical and Computer Engineering Department University of Minnesota

Oct 18, 2022

Stochastic Optimization Problem

$$\min_{x\in\mathcal{K}} \ \overline{f}(x) = \mathbb{E}_{z}[f(x,\mathbf{z})]$$



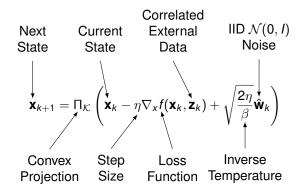
Strongly convex outside a ball

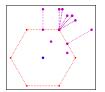
Polyhedral, not necessarily bounded

Constraint \mathcal{K}

Constrained Langevin Algorithms

Gradient descent + Additive noise

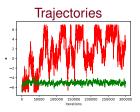


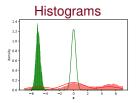


Motivation

- Why Langevin algorithms?
 - Potential choice for adaptive control, deep neural networks, reinforcement learning, time series analysis, image processing and so on
 - Impossible to find an algorithm that efficiently solves all the non-convex optimization problems
 - Properly-scaled additive noise assists to escape from local minima and saddles
- Why constraint?

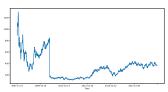
Polyhedral constraint is very common in applications with box and simplex constraints





Why L-mixing Processes?

- Minimizing a loss with external random variables is common
- External random variables are not necessarily IID
- The class of L-mixing processes was introduced in (Gerencsér, 1989) for system identification and time-series analysis
- The class of L-mixing processes gives a means to quantitatively measure how the dependencies between the random variables decay over time



Stock Market Data 1

https://www.kaggle.com/datasets/rohanrao/nifty50-stock-market-data

Related Work

Optimization

- Initial work: Gelfand and Mitter (1991); Borkar and Mitter (1999)
- Unconstrained: Raginsky, Rakhlin, and Telgarsky (2017); Chau et al. (2021)
- Constrained: Lamperski (2021); Sato et al. (2022)

Sampling

- Initial work: Roberts, Tweedie, et al. (1996)
- Strongly log-concave: Dalalyan (2017); Durmus, Moulines, et al. (2017)
- Only log-concave: Dalalyan, Karagulyan, and Riou-Durand (2019); Mou et al. (2019)
- Non log-concave: Majka, Mijatović, Szpruch, et al. (2020); Zou, Xu, and Gu (2021)
- <u>Constrained</u>: Bubeck, Eldan, and Lehec (2015); Bubeck, Eldan, and Lehec (2018); Hsieh et al. (2018); Ahn and Chewi (2020); Zhang et al. (2020)

Learning

- Bayesian learning: Welling and Teh (2011)
- <u>IID external variables</u>: Raginsky, Rakhlin, and Telgarsky (2017); Lamperski (2021)
- Dependent external variables: Chau et al. (2021)
- Advanced Langevin algorithms: Girolami and Calderhead (2011); Ahn, Korattikara, and Welling (2012); Ma, Chen, and Fox (2015); Kim, Song, and Liang (2020)

Result & Comparison

Theorem 1

Assume that $\eta \leq \min \{\frac{1}{4}, \frac{\mu}{4\ell^2}\}$, \mathcal{K} is a polyhedron with 0 in its interior, $\mathbf{x}_0 \in \mathcal{K}$, and $\mathbb{E}[\|\mathbf{x}_0\|^2] \leq \varsigma$. There are constants a, c_1, c_2, c_3 , and c_4 such that the following bound holds for all integers $k \geq 4$:

$$\mathcal{W}_1(\mathcal{L}(\mathbf{x}_k), \pi_{eta\overline{f}}) \leq (c_1 + c_2\sqrt{\varsigma})e^{-\eta ak} + (c_3 + c_4\sqrt{\varsigma})\sqrt{\eta\log(\eta^{-1})}$$

In particular, if $\eta = \frac{\log T}{2aT}$, $T \ge 4$ and $T \ge e^{2a}$, then

$$W_1(\mathcal{L}(\mathbf{x}_T), \pi_{\beta \overline{f}}) \leq \left(c_1 + c_2\sqrt{\varsigma} + \frac{c_3 + c_4\sqrt{\varsigma}}{(2a)^{1/2}}\right) T^{-1/2} \log T.$$

Gibbs distribution: $\pi_{\beta \overline{f}}(A) = \frac{\int_{A \cap \mathcal{K}} e^{-\beta \overline{f}(x)} dx}{\int_{\mathcal{K}} e^{-\beta \overline{f}(x)} dx}$

	Constraint	RV	Convergence Rate
Our work	noncompact	L-mixing	$O(T^{-1/2}\log T)$
Chau et al. (2021)	unconstrained	L-mixing	$O(T^{-1/2}(\log T)^{1/2})$
Lamperski (2021)	compact	IID	$O(T^{-1/4}(\log T)^{1/2})$