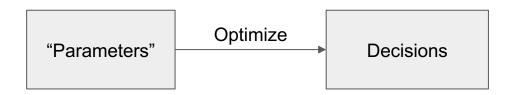
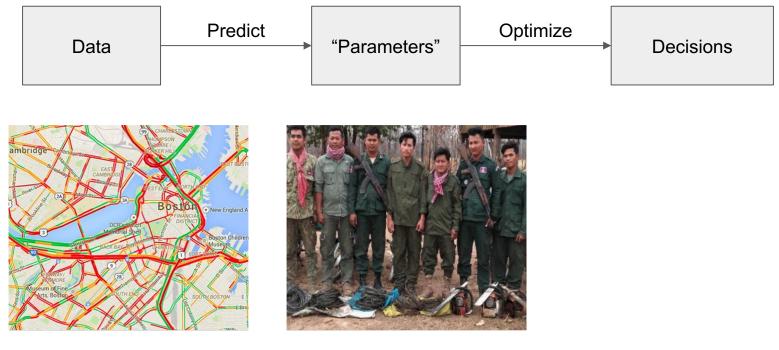
Decision-Focused Learning without Decision-Making: Learning Locally Optimized Decision Losses

Sanket Shah

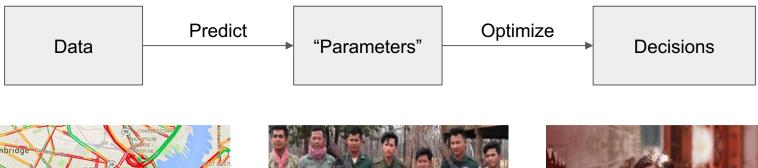


Route Planning

Route Planning



Wildlife Conservation



Route Planning

Wildlife Conservation

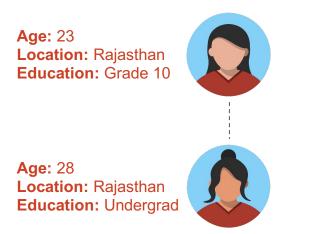
Public Health

2

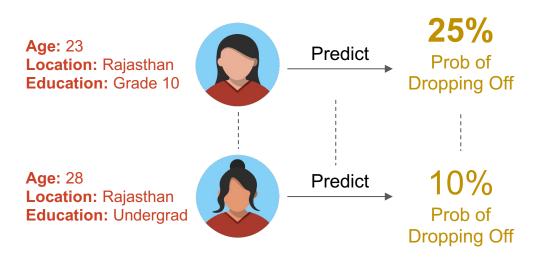
51

- **mMitra:** Maternal health information via voice and text messages (2.6 million women reached!)
 - Limited Resource: Phone call by health worker

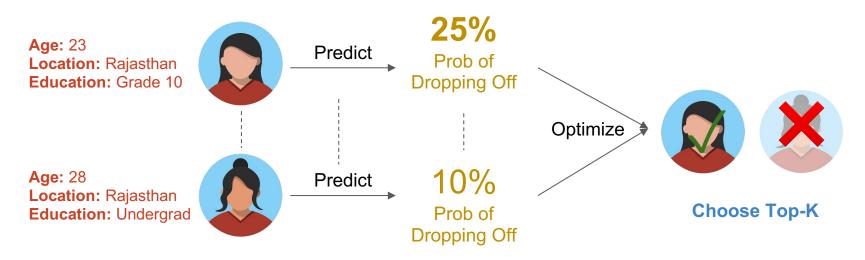
- **mMitra:** Maternal health information via voice and text messages (2.6 million women reached!)
 - Limited Resource: Phone call by health worker



- **mMitra:** Maternal health information via voice and text messages (2.6 million women reached!)
 - Limited Resource: Phone call by health worker

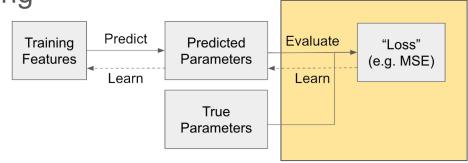


- **mMitra:** Maternal health information via voice and text messages (2.6 million women reached!)
 - Limited Resource: Phone call by health worker

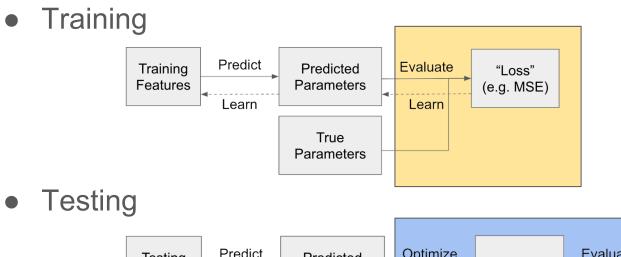


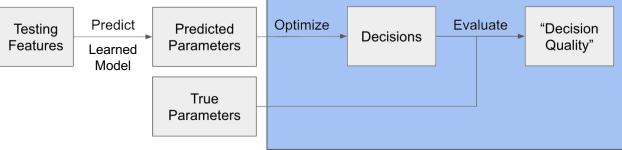
Standard Solution: "2-Stage" Learning

• Training

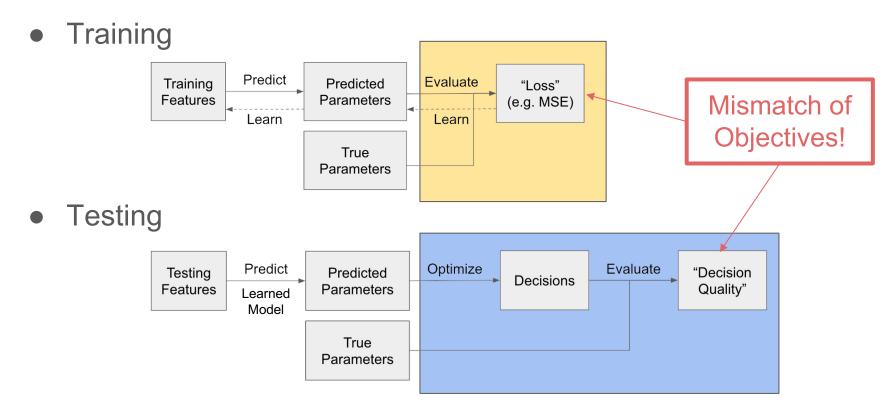


Standard Solution: "2-Stage" Learning

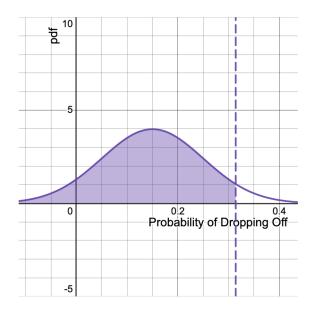




Standard Solution: "2-Stage" Learning



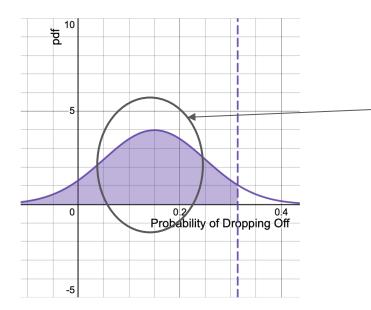
Mismatch of Objectives



Objective: Choose top 5% of beneficiaries

True Distribution

Mismatch of Objectives

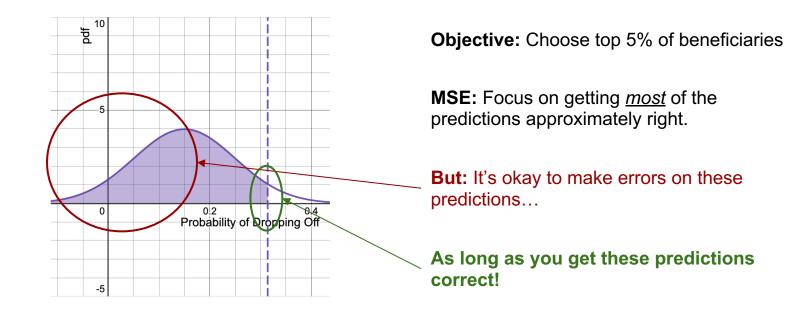


Objective: Choose top 5% of beneficiaries

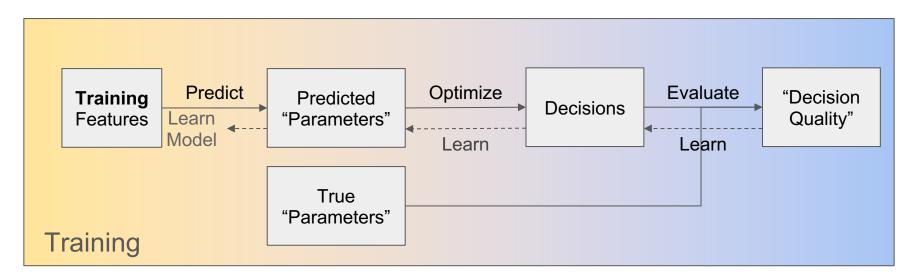
MSE: Focus on getting *most* of the predictions approximately right.

True Distribution

Mismatch of Objectives



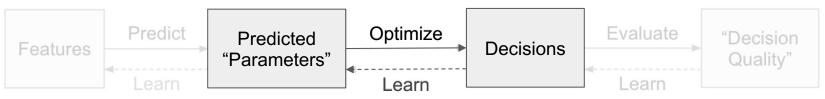
SoTA: Decision Focused Learning (DFL)



We can learn better models by taking into account task structure while training! [Elmachtoub and Grigas 2022, Donti et al. 2017, Wilder et al. 2019]

Challenge

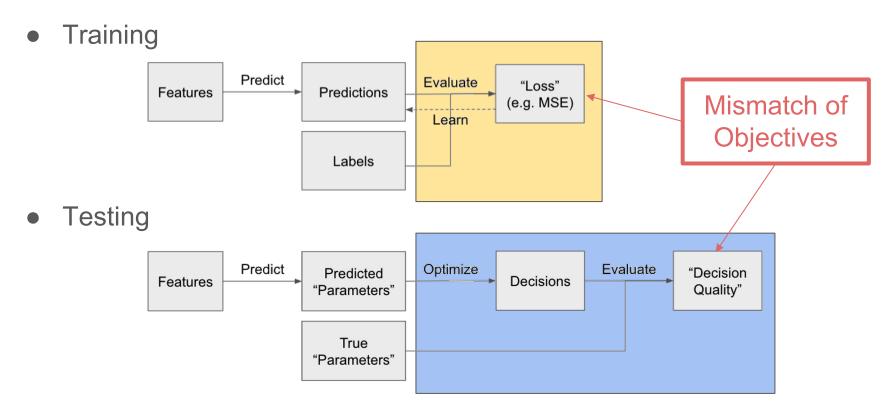
• Differentiating through the optimization problem is difficult:



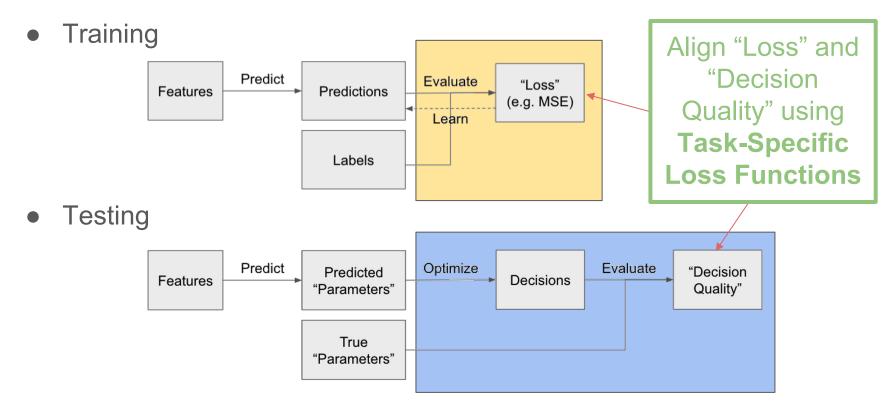
• E.g., argmax operation is non-smooth in discrete optimization

- **Past Work:** Create "surrogate" problems that you *can* differentiate through. **BUT:**
 - A. Surrogates are *handcrafted* and *task-specific*
 - B. Surrogates are often not convex

Contribution (1)



Contribution (1)

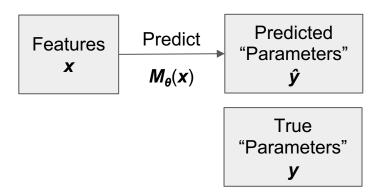


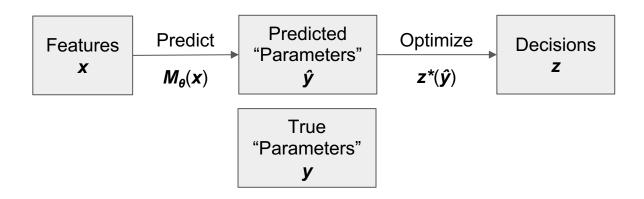
- Idea: (A) <u>Automatically learn</u> task-specific "loss" functions that are (B) <u>convex-by-construction</u>
 - Does away with argmax/surrogates altogether!
- **Results:** We outperform 2-stage on three resource allocation domains from the literature
 - We even do better than DFL in the two domains where DFL requires surrogates!

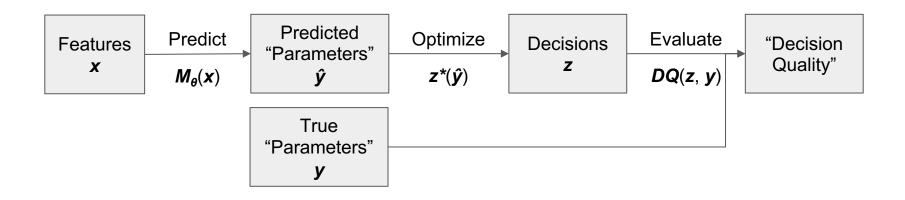
Outline

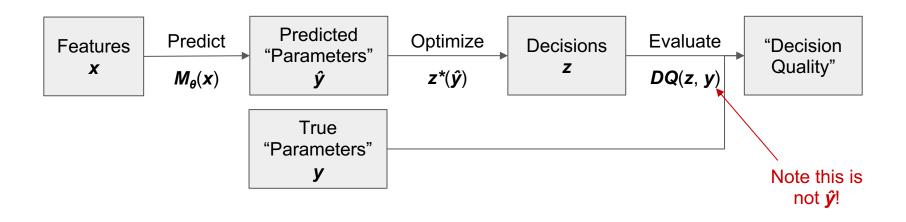
- Introduction
- Predict-Then-Optimize Details
- Our Approach
- Experiments
- Conclusions and Future Work

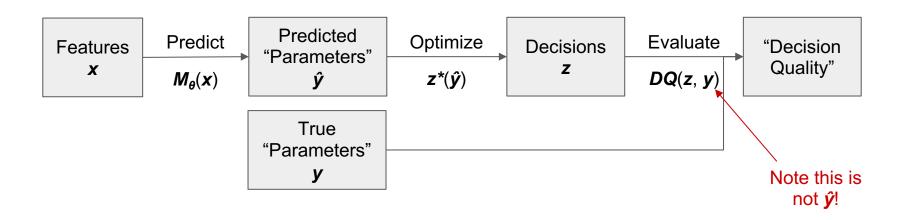
Features *x*







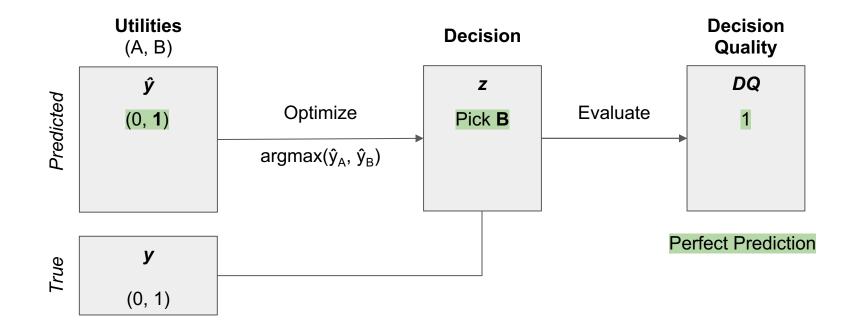


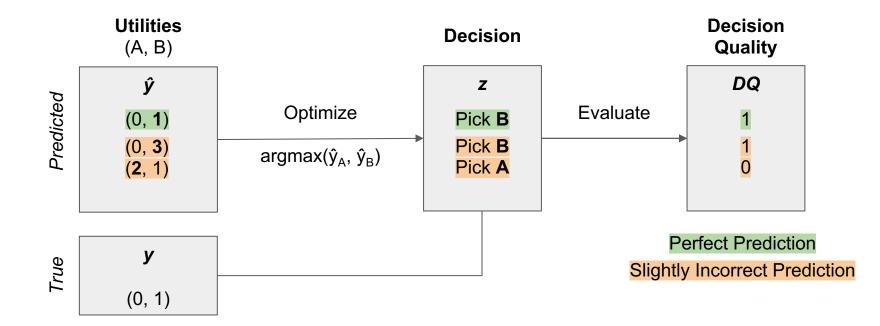


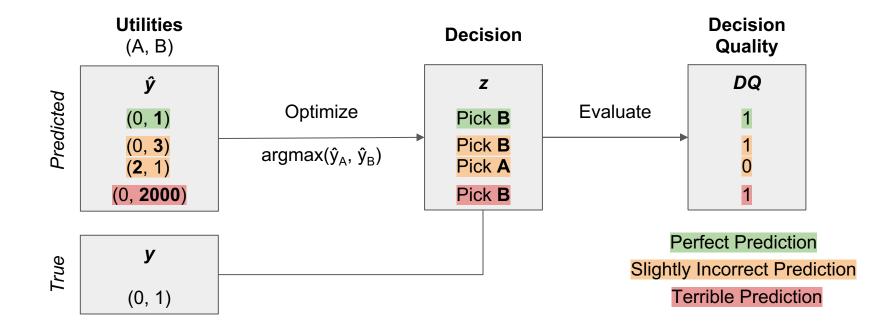
• **Decision Quality:** How good are the *decisions* made on *predicted* parameters when tested on the *true* parameters?

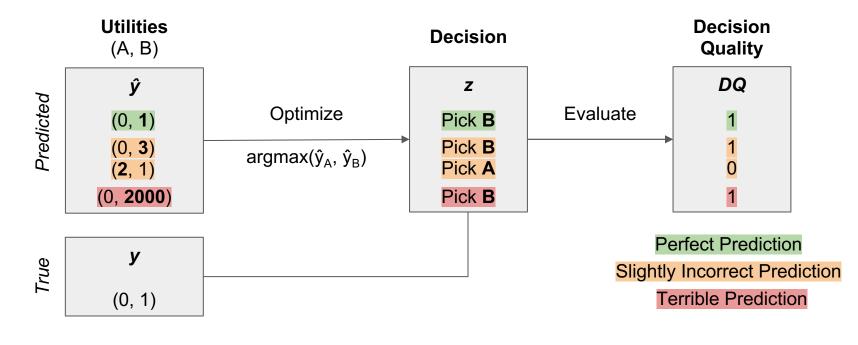
Minimal Example

- Resource Allocation: 2 Beneficiaries (A and B), 1 Resource
 - **Predict:** *Utilities* for beneficiaries
 - **Optimize:** Give resource to beneficiary with higher utility
- **Decision Quality:** True utility of the beneficiary who you give the resource to







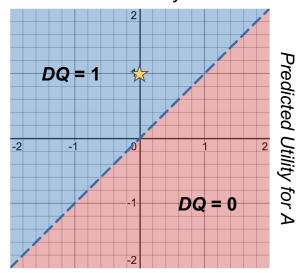


Predictive Accuracy

78

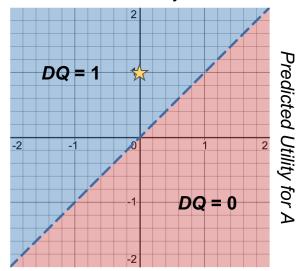
Non-Smoothness

Predicted Utility for B



Non-Smoothness

Predicted Utility for B

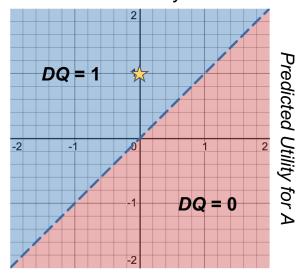


Decision quality is piecewise constant

Gradients for DFL are uninformative

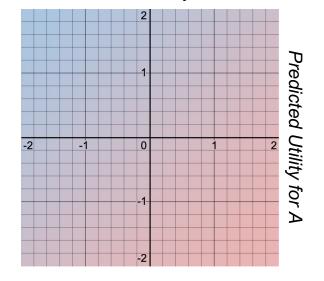
Non-Smoothness

Predicted Utility for B



True Optimization

Predicted Utility for B

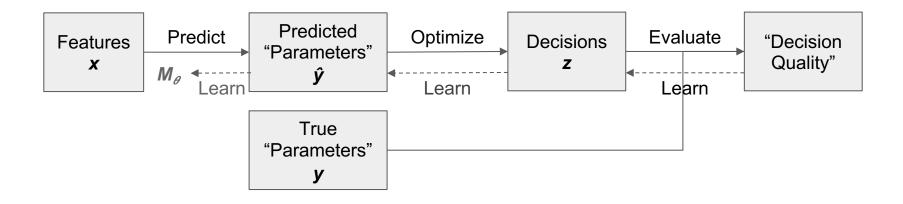


"Surrogate" Optimization

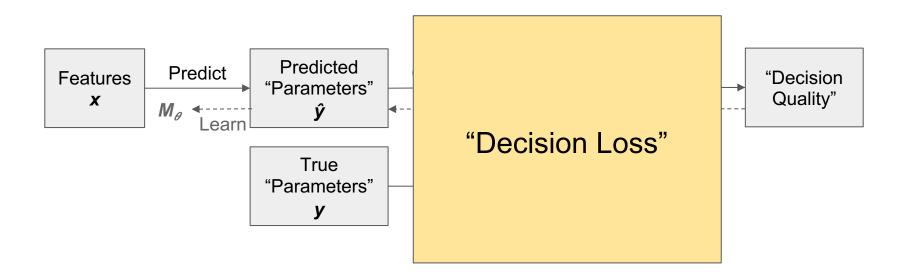
Outline

- Introduction
- Predict-Then-Optimize Details
- Our Approach
- Experiments
- Conclusions and Future Work

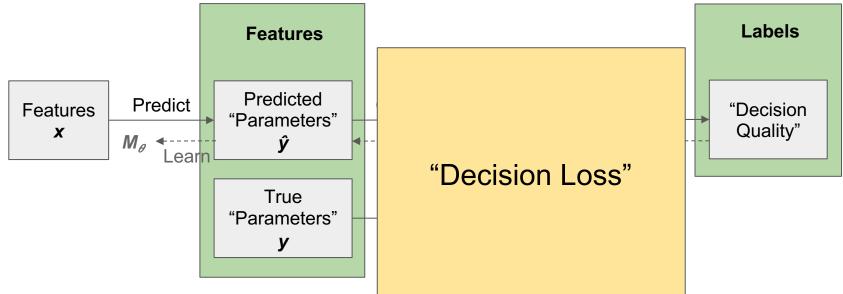
"Decision Loss"



"Decision Loss"

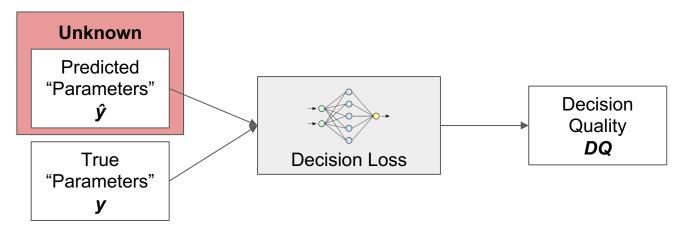


"Decision Loss"



We formulate learning the decision loss as a supervised learning problem

Learning Decision Loss



- Step 1: Generate samples of "realistic" (ŷ, y) inputs and calculate DQ to create training data
- **Step 2:** Fit a *convex-by-construction* model to these input-output pairs

Step 1: Generate "Predicted Parameters"

Step 1: Generate "Predicted Parameters"

But how? Don't we need a predictive model for that?

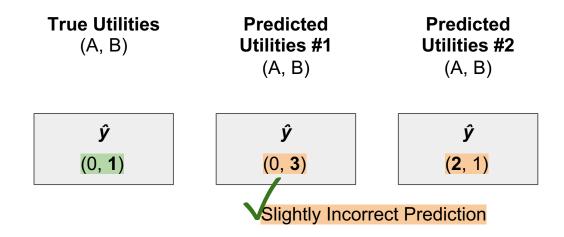
19

- The predictive model will get you *close* to the true params
 - Decision Loss' job is to help differentiate between predictions that are close to the true label
 - \circ "Realistic predictions" \rightarrow "Approximately correct predictions"

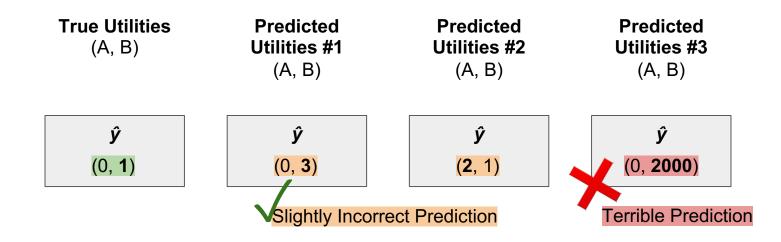
- The predictive model will get you *close* to the true params
 - Decision Loss' job is to help differentiate between predictions that are close to the true label
 - \circ "Realistic predictions" \rightarrow "Approximately correct predictions"

True Utilities (A, B)

- The predictive model will get you *close* to the true params
 - Decision Loss' job is to help differentiate between predictions that are close to the true label
 - "Realistic predictions" → "Approximately correct predictions"



- The predictive model will get you *close* to the true params
 - Decision Loss' job is to help differentiate between predictions that are close to the true label
 - "Realistic predictions" → "Approximately correct predictions"



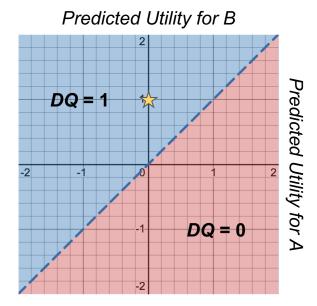
Sampling Strategies (Step 1)

20

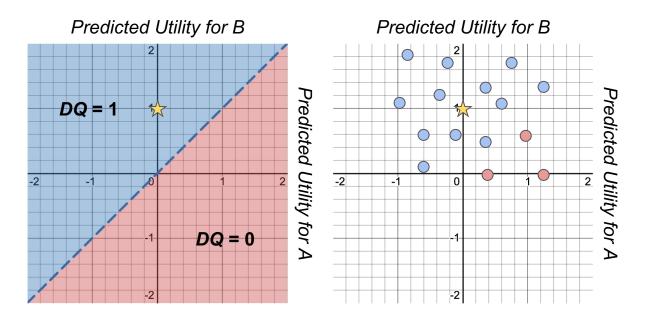
- Sample "realistic"/nearby points by adding Gaussian Noise to the true parameters:
 - <u>All-Perturbed:</u> Add noise to *all n* dimensions simultaneously

$$\boldsymbol{y}_n^i = \boldsymbol{y}_n + \boldsymbol{\epsilon}^k = \boldsymbol{y}_n + \alpha \cdot \mathcal{N}(0, I)$$

<u>1-Perturbed and 2-Perturbed:</u> Perturb 1 or 2 dimensions at a time.
 Similar to calculating the numerical gradient and hessian

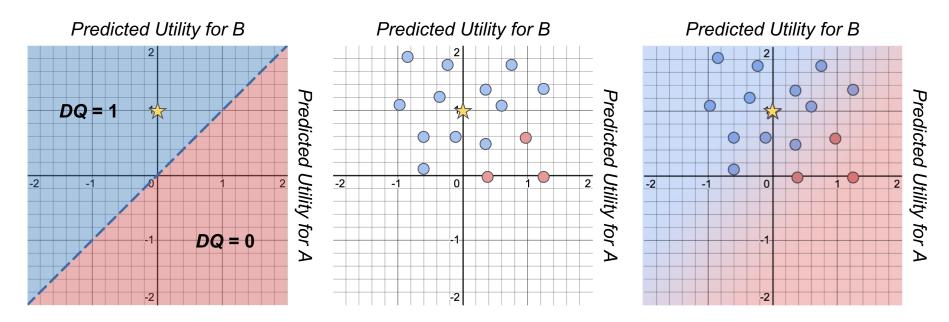


True Optimization



True Optimization

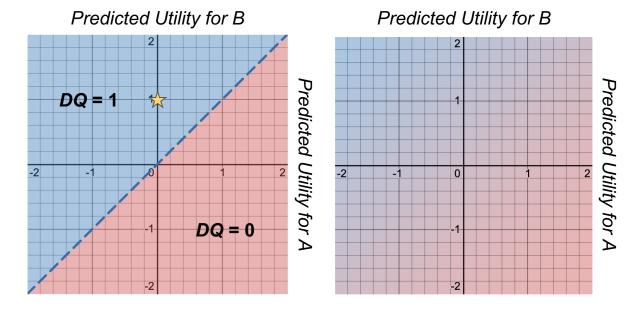
Sampled Points



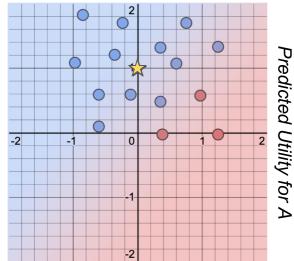
True Optimization

Sampled Points

Learned Loss (Without Handcrafting)



Predicted Utility for B



True Optimization

"Surrogate" Optimization

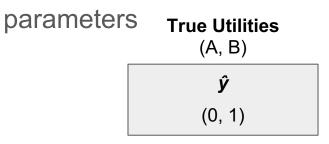
Learned Loss (Without Handcrafting)

Step 2: Learn a Task-Specific Loss

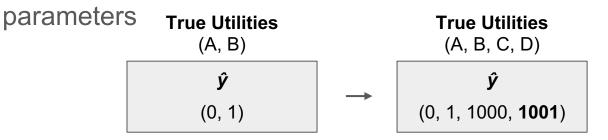
Step 2: Learn a Task-Specific Loss

How do we make it "convex-by-construction"?

- (Approach 1) Weighted-MSE:
 - <u>Hypothesis:</u> Decision Quality is not equally sensitive to all



- (Approach 1) Weighted-MSE:
 - <u>Hypothesis:</u> Decision Quality is not equally sensitive to all



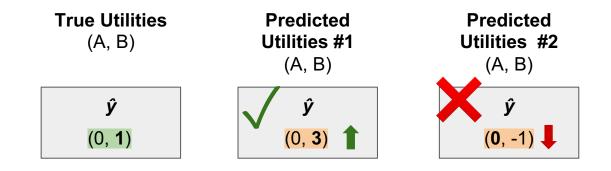
- (Approach 1) Weighted-MSE:
 - <u>Hypothesis:</u> Decision Quality is not equally sensitive to all

- (Approach 1) Weighted-MSE:
 - <u>Hypothesis:</u> Decision Quality is not equally sensitive to all

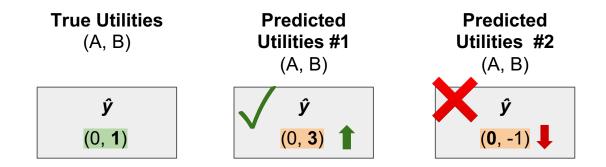
 Idea: Learn a "weight" for each parameter, based on how much it affects the Decision Quality

$$\sum_{l=1}^{dim(oldsymbol{y})} w_l \cdot (oldsymbol{\hat{y}}_l - oldsymbol{y}_l)^2$$

- (Approach 2) "Directed Weighted-MSE":
 - <u>Hypothesis</u>: Over-predicting and under-predicting can have different consequences.

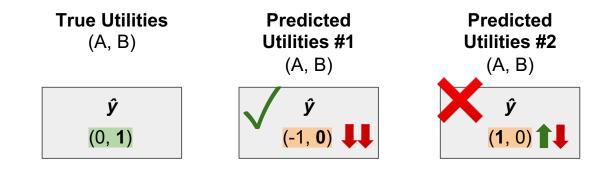


- (Approach 2) "Directed Weighted-MSE":
 - <u>Hypothesis</u>: Over-predicting and under-predicting can have different consequences.

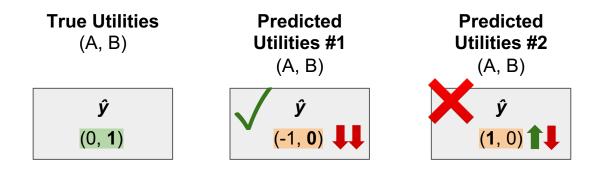


o Idea: Learn different parameters for over- and under-predicting

- (Approach 3) "Quadratic":
 - <u>Hypothesis</u>: It's not just about whether individual predictions are over- or under-predict



- (Approach 3) "Quadratic":
 - <u>Hypothesis</u>: It's not just about whether individual predictions are over- or under-predict



 \circ <u>Idea:</u> Learn a low-rank symmetric PSD matrix H $(\hat{m{y}} - m{y})^T H (\hat{m{y}} - m{y})$

- (Approach 3) "Quadratic":
 - <u>Alternate Interpretation</u>: Equals 2^{nd} -order Taylor series approximation of **DL** at $\hat{y} = y$

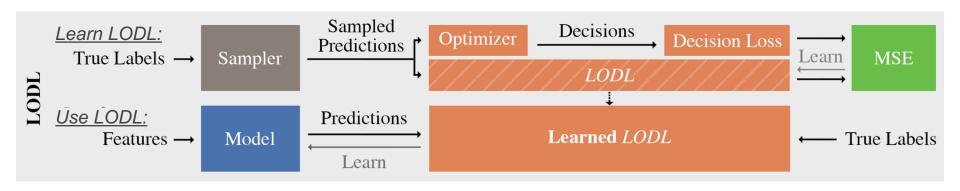
$$DL(\hat{\boldsymbol{y}}_{n} + \boldsymbol{\epsilon}, \boldsymbol{y}_{n}) = \underbrace{DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})}_{\text{OL}(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})} + \underbrace{\nabla_{\hat{\boldsymbol{y}}_{n}} DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})}_{\text{Hessian } H} \boldsymbol{\epsilon} + \boldsymbol{\epsilon}^{T} \underbrace{\nabla_{\hat{\boldsymbol{y}}_{n}}^{2} DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})}_{\text{Hessian } H} \boldsymbol{\epsilon} + \dots \\ \approx DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n}) + (\hat{\boldsymbol{y}}_{n} - \boldsymbol{y}_{n})^{T} H(\hat{\boldsymbol{y}}_{n} - \boldsymbol{y}_{n})$$

- (Approach 3) "Quadratic":
 - <u>Alternate Interpretation</u>: Equals 2^{nd} -order Taylor series approximation of **DL** at $\hat{y} = y$

$$DL(\hat{\boldsymbol{y}}_{n}, \boldsymbol{i}, \boldsymbol{y}_{n}) = \underbrace{DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})}_{OL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})} + \underbrace{\nabla_{\hat{\boldsymbol{y}}_{n}} DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})}_{Hessian H} \boldsymbol{\epsilon} + \boldsymbol{\epsilon}^{T} \underbrace{\nabla_{\hat{\boldsymbol{y}}_{n}}^{2} DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n})}_{Hessian H} \boldsymbol{\epsilon} + \dots$$

$$\approx DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n}) + (\hat{\boldsymbol{y}}_{n} - \boldsymbol{y}_{n})^{T} H(\hat{\boldsymbol{y}}_{n} - \boldsymbol{y}_{n})$$

$$\implies DL(\hat{\boldsymbol{y}}_{n}, \boldsymbol{y}_{n}) - DL(\boldsymbol{y}_{n}, \boldsymbol{y}_{n}) \approx (\hat{\boldsymbol{y}}_{n} - \boldsymbol{y}_{n})^{T} H(\hat{\boldsymbol{y}}_{n} - \boldsymbol{y}_{n})$$



Outline

- Introduction
- Predict-Then-Optimize Details
- Our Approach
- Experiments
- Conclusions and Future Work

Domains

Three resource allocation domains from the literature:

- 1. Linear Model: Top-K
 - predictive model is linear, but underlying distribution is cubic
- 2. Web Advertising: Submodular Maximization
 - Predict CTRs, decide which websites on which to advertise
- 3. Portfolio Optimization: Quadratic Program
 - Predict future stock value, maximize "return" "risk"

Baselines

- <u>Upper and Lower Bounds:</u>
 - **Random:** Randomly sample a value from *U*[0, 1]
 - **Optimal:** Use true parameters as predictions
- Past Approaches:
 - **2-Stage (MSE):** Train predictive model with MSE
 - **DFL:** Using the surrogate from the literature
- Importance of Convexity:
 - NN-based "Decision Loss"

Results 1: Performance on 3 Domains

DirectedOuadratic

Loss Function	Normalized DQ On Test Data		
1055 I unction	Linear Model	Web Advertising	Portfolio Optimization
Random	0	0	0
Optimal	1	1	1
2-Stage (MSE)	-0.953 ± 0.000	0.476 ± 0.147	0.320 ± 0.015
DFL	0.828 ± 0.383	0.854 ± 0.100	0.348 ± 0.015

Га	keaway 1: Directed Quadratic does well consistently <u>without</u>
	handcrafting!

 0.962 ± 0.000

 0.910 ± 0.043

 0.325 ± 0.014

Т

Results 1: Performance on 3 Domains

Loss Function	Normalized DQ On Test Data		
	Linear Model	Web Advertising	Portfolio Optimization
Random	0	0	0
Optimal	1	1	1
2-Stage (MSE)	-0.953 ± 0.000	0.476 ± 0.147	0.320 ± 0.015
DFL	0.828 ± 0.383	0.854 ± 0.100	0.348 ± 0.015
NN	0.962 ± 0.000	0.814 ± 0.137	-0.105 ± 0.084

Takeaway 2: Lack of Convexity can lead to inconsistent results

Results 1: Performance on 3 Domains

Loss Function	Normalized DQ On Test Data		
	Linear Model	Web Advertising	Portfolio Optimization
Random	0	0	0
Optimal	1	1	1
2-Stage (MSE)	-0.953 ± 0.000	0.476 ± 0.147	0.320 ± 0.015
DFL	0.828 ± 0.383	0.854 ± 0.100	0.348 ± 0.015
NN	0.962 ± 0.000	0.814 ± 0.137	-0.105 ± 0.084
WeightedMSE	-0.934 ± 0.060	0.576 ± 0.151	0.308 ± 0.018
DirectedWeightedMSE	0.962 ± 0.000	0.533 ± 0.137	0.322 ± 0.015
Quadratic	-0.752 ± 0.377	0.931 ± 0.040	0.272 ± 0.020
DirectedQuadratic	0.962 ± 0.000	0.910 ± 0.043	0.325 ± 0.014

Takeaway 3: DFL has high variance (when surrogates are nonconvex)

116

Results 2: Ablations (on Web Advertising domain)

Approach	Normalized Test DQ (1-Perturbed)	Normalized Test DQ (2-Perturbed)	Normalized Test DQ (All-Perturbed)
NN	0.855 ± 0.121	0.888 ± 0.086	0.802 ± 0.159
WeightedMSE	0.496 ± 0.138	0.533 ± 0.139	0.576 ± 0.151
DirectedWeightedMSE	0.470 ± 0.150	0.533 ± 0.160	0.500 ± 0.130
Quadratic	0.773 ± 0.250	0.877 ± 0.097	0.918 ± 0.048
DirectedQuadratic	0.770 ± 0.187	0.842 ± 0.109	0.845 ± 0.080

Varying Sampling Strategy: Best strategy is dependent on the loss function family

Results 2: Ablations (on Web Advertising domain)

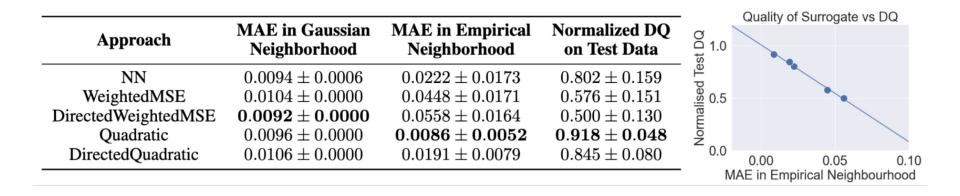
Approach	Normalized Test DQ (50 samples)	Normalized Test DQ (500 samples)	Normalized Test DQ (5000 samples)
NN	0.805 ± 0.134	0.802 ± 0.159	$\boldsymbol{0.814 \pm 0.137}$
WeightedMSE	0.496 ± 0.138	0.496 ± 0.139	0.533 ± 0.137
DirectedWeightedMSE	0.477 ± 0.147	0.533 ± 0.159	0.533 ± 0.149
Quadratic	0.677 ± 0.173	0.918 ± 0.048	0.931 ± 0.040
DirectedQuadratic	0.594 ± 0.134	0.845 ± 0.081	$\boldsymbol{0.910 \pm 0.043}$

Varying Number of Samples: More samples is better

Results 3: Quality of Learned Loss vs. Decision Quality

- "Error" depends on distribution of interest:
 - **"Empirical Neighbourhood":** True "predicted" parameters encountered while training predictive model
 - "Gaussian Neighbourhood": Proxy for above calculated by adding noise to the "true" labels
- The second is an approximation for the first (via the localness assumption)

Results 3: Quality of Learned Loss vs. Decision Quality



Decision Quality is correlated with Error in the Empirical Neighbourhood but *not* the Gaussian Neighbourhood!

Outline

- Introduction
- Predict-Then-Optimize Details
- Our Approach
- Experiments
- Conclusions and Future Work

Conclusions

- We provide a novel way to address the `non-differentiability' of optimization problems in the context of predict-then-optimize
- We show that our approach performs well on 3 domains from the literature

Future Work: 1-Year Scale

- Better Proxy for "Empirical Neighbourhood": We see that the Gaussian Neighbourhood is not an ideal proxy.
 - Perhaps we can use a 2-stage model to sample points?
- Theoretical Analysis of DFL: So far, we only show that our approach outperforms 2-stage on 3 domains. However, the results can be sensitive to small changes in the domain.
 - Can we analyze necessary conditions for the improvement?

Future Work: PhD Scale

41

- Better understand the **mechanism** behind why DFL does better than 2-stage and see if we can generalize that without DFL
 - More broadly, see if better "losses" improve ML outputs?
- Find a **real-world application** in which we can do better by incorporating task structure while learning

Acknowledgement

Kai Wang

Prof. Bryan Wilder Prof. Andrew Perrault

Prof. Milind Tambe

Thank You!

Bibliography

- 1. Donti, Priya, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." Advances in neural information processing systems 30 (2017).
- 2. Elmachtoub, Adam N., and Paul Grigas. "Smart "predict, then optimize"." Management Science 68.1 (2022): 9-26.
- Wilder, Bryan, Bistra Dilkina, and Milind Tambe. "Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.

Training Schematic

