ETH zürich

Data Analytics Lab Cosmology Research Group

Cosmology from Galaxy Redshift Surveys with PointNet

Sotirios Anagnostidis, **Arne Thomsen**, Tomasz Kacprzak, Tilman Troester, Luca Biggio, Alexandre Refregier and Thomas Hofmann

Abstract

General setting

- The ACDM model of cosmology: free parameters
- Galaxy redshift surveys: positions of millions of galaxies
- → Parameter constraints

Goals of this work

- Comparison between
 - Hand crafted features (standard approach)
 - Learned features
- Higher precision constraints

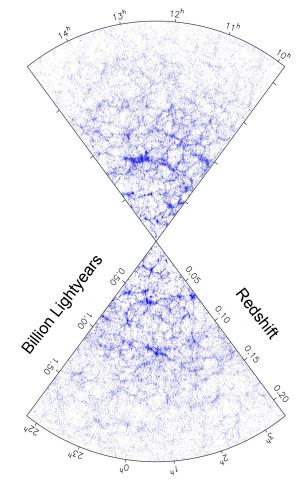
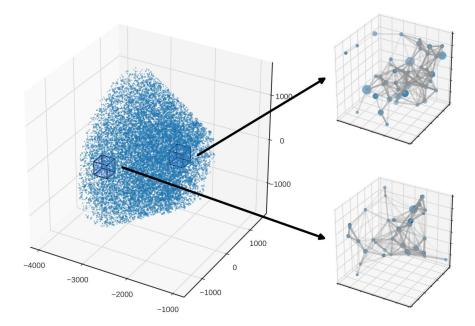


Image credit: 2dF Galaxy Redshift Survey


Dataset

Cosmological aspects

- Dark matter only N-body simulations
 → Halo catalogs
- Parameters
 - \circ Ω_M Present-day matter fraction
 - \circ σ_8 Clumpiness of the matter distribution

Format

- Point clouds
- Features
 - \circ Positions only (x,y,z)
 - Positions and masses (x,y,z,M)

Features

Two-point statistics (hand crafted)

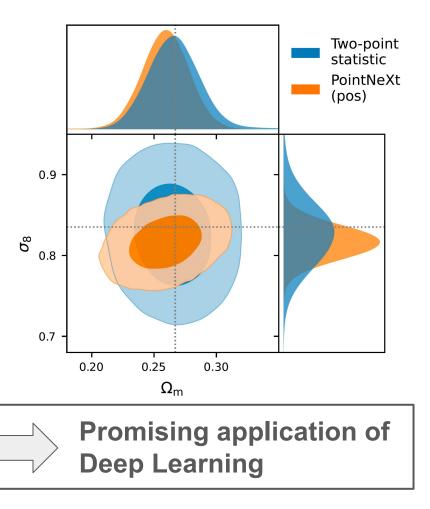
- Standard summary statistic
 - Real space: *correlation function*
 - Fourier space: *power spectrum*
- Sufficient for Gaussian random fields

Point cloud networks (learned)

- PointNeXt architecture
- Automatic extraction of relevant features
- Hierarchical
- Can easily include additional features

Both cases

- Input to multilayer perceptrons (MLPs)
- Direct regression of the cosmological parameters (MSE loss)


Results

Equal numbers of points

- MSE on test set
- Posterior conditioned on a mock observation
- \rightarrow The networks outperform the correlators

# points	PointNeXt (pos)	PointNeXt (pos+M)	Two-point
8 000	3.6	1.3	8.3
16 000	2.4	0.67	3.3
32 000	1.3	0.58	1.8

MSE in multiples of 10^-3

