

C-GATS: Conditional Generation of Anomalous Time Series

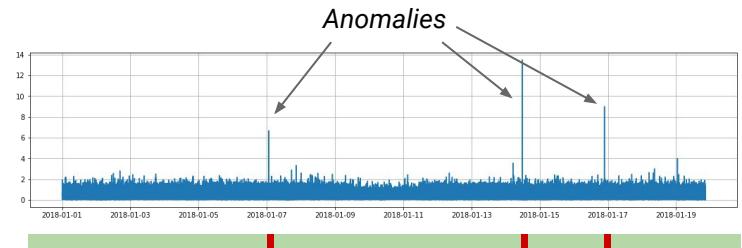
Vikramank Singh, Abishek Sankararaman, Balakrishnan (Murali) Narayanaswamy, Zhao Song
Amazon Web Services (AWS) AI Labs

Anomalies in real-world are rare.

Anomaly Detection (AD) is fundamental to many real-world applications

Fraud
Detection

Performance
Monitoring

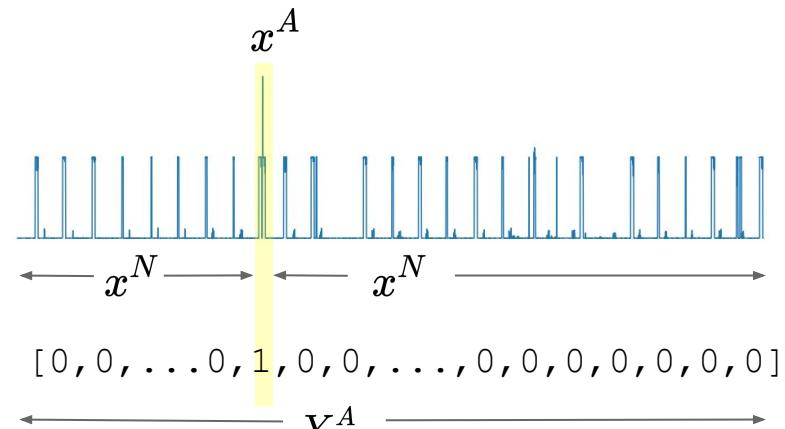

Health
Tracking

Let X : Anomalous time series, Y : Labels

X in real-world are **rare**

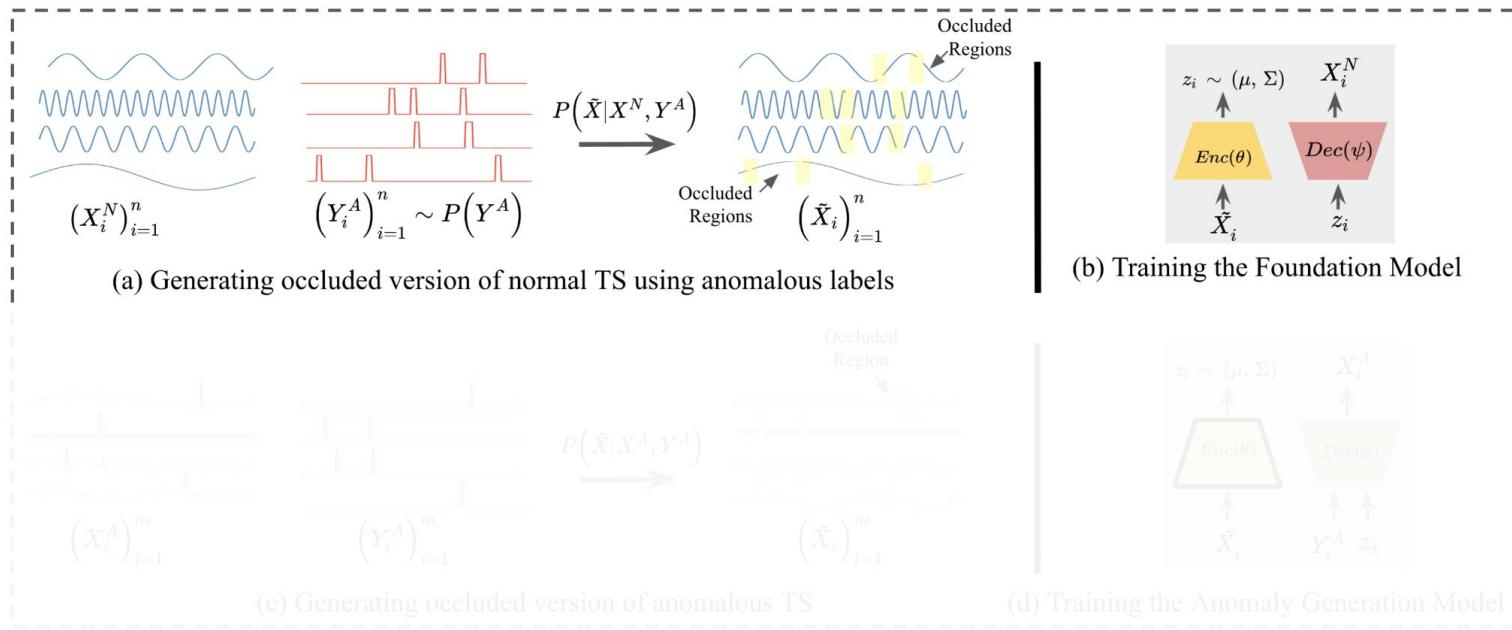
Obtaining Y is **hard**.

Supervised AD models need large amounts of (X, Y) for good performance.

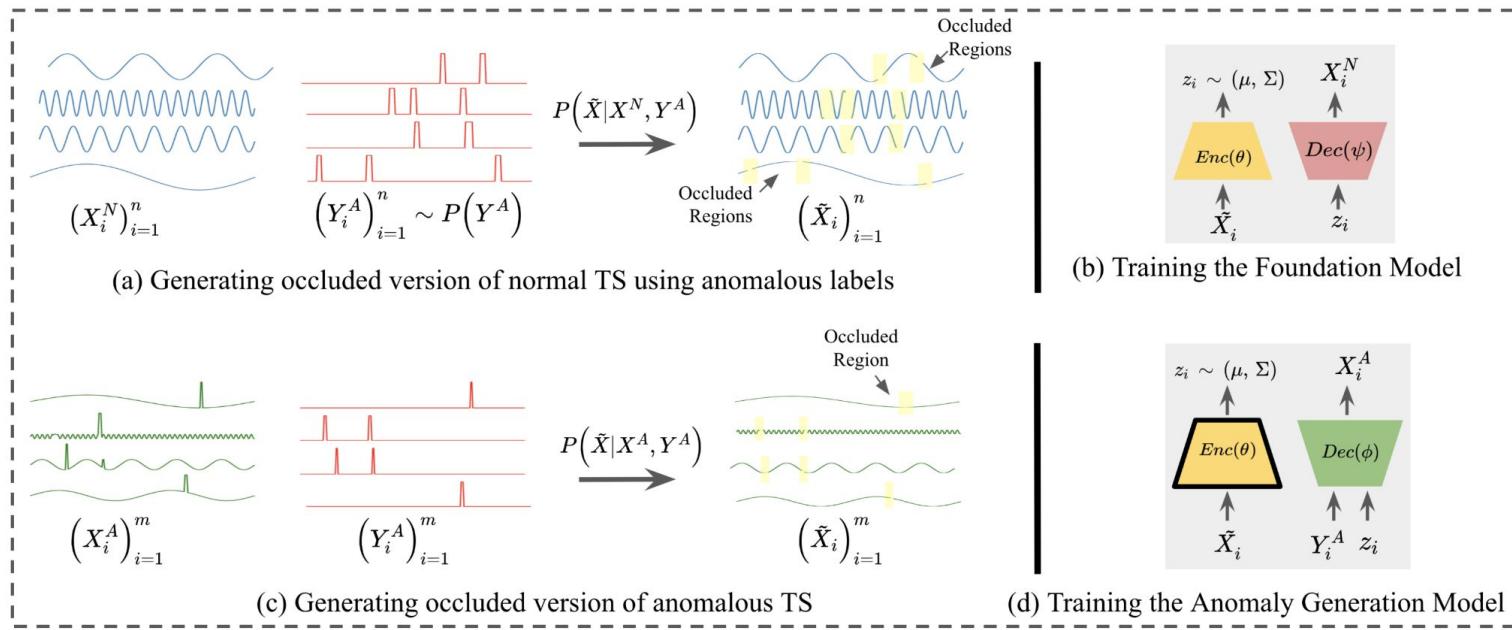


Q. Can we generate these (X, Y) pairs synthetically to improve performance of supervised AD models?

C-GATS: Framework

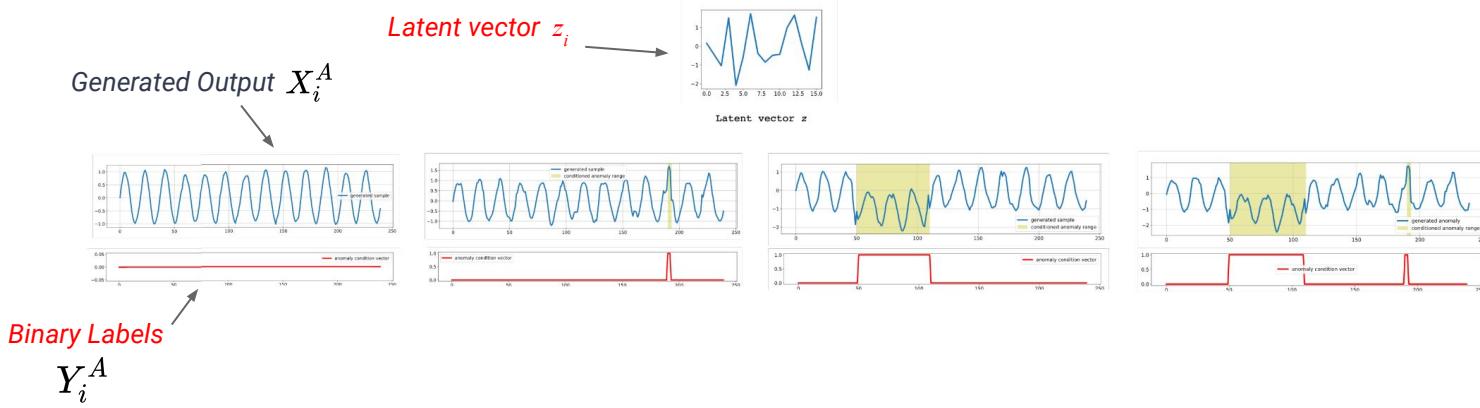

$$X^A \equiv x^A \cup x^N$$

$$p(X^A) = \underbrace{p(x^N)}_{\substack{\text{modeled} \\ \text{using } p(X^N)}} \cdot \underbrace{p(x^A)}_{\substack{\text{modeled using} \\ p(X^A | X^N, Y^A)}} \cdot \underbrace{p(Y^A)}_{\substack{\text{modeled} \\ \text{using } P(Y^A)}}$$



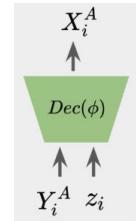
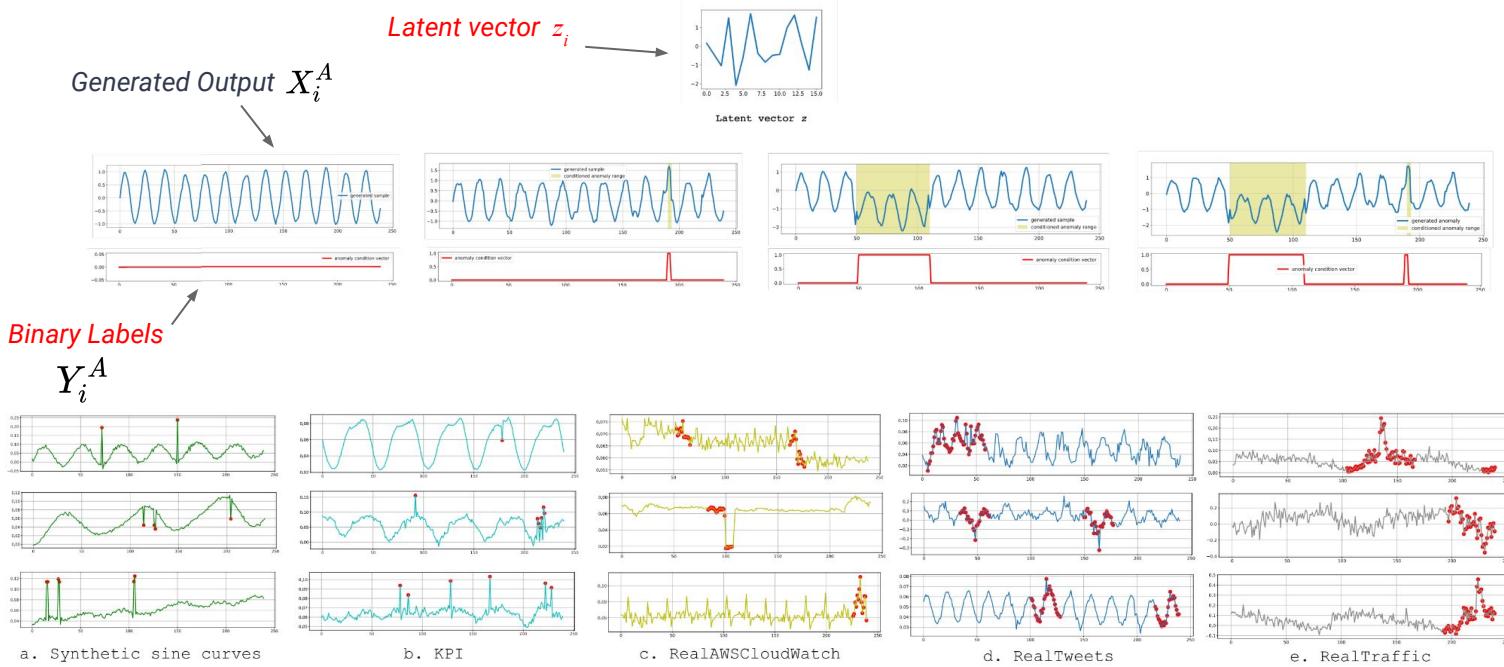
Attributes of the anomaly (eg: position, type, etc)

C-GATS: Framework (Stage - I)


C-GATS: Framework (Stage - I)

C-GATS: Qualitative Results

Baselines



7 Data Augmentation methods
 8 Anomaly Detection algorithms
 6 different real and synthetic datasets

C-GATS: Qualitative Results

Baselines

7 Data Augmentation methods
 8 Anomaly Detection algorithms
 6 different real and synthetic datasets

Inference Network

C-GATS: Quantitative Results

7 Data Augmentation methods
8 Anomaly Detection algorithms
6 different real and synthetic datasets

AD Algorithm	TRTR			T(R+S)TR			TRTS			TSTR		
	Precision	Recall	F1									
RobustTAD	0.57	0.53	0.55	0.69	0.66	0.67	0.50	0.45	0.48	0.65	0.64	0.64
SR-CNN	0.55	0.51	0.54	0.61	0.55	0.58	0.47	0.43	0.44	0.60	0.55	0.57
NCAD	0.60	0.68	0.64	0.70	0.69	0.69	0.51	0.54	0.52	0.65	0.73	0.68

Comparing performance (F1 scores) of a supervised SOTA AD algorithm on a real held-out test set when trained on Real vs Synthetic dataset

C-GATS: Quantitative Results

7 Data Augmentation (DA) methods
 8 Anomaly Detection (AD) algorithms
 6 different real and synthetic datasets

AD Algorithm	TRTR			T(R+S)TR			TRTS			TSTR		
	Precision	Recall	F1									
RobustTAD	0.57	0.53	0.55	0.69	0.66	0.67	0.50	0.45	0.48	0.65	0.64	0.64
SR-CNN	0.55	0.51	0.54	0.61	0.55	0.58	0.47	0.43	0.44	0.60	0.55	0.57
NCAD	0.60	0.68	0.64	0.70	0.69	0.69	0.51	0.54	0.52	0.65	0.73	0.68

Comparing performance (F1 scores) of a supervised SOTA AD algorithm on a real held-out test set when trained on Real vs Synthetic dataset

Algorithm	Dataset	w/o Aug.	Mixup (alpha=0.2)	CutMix	Combination (Scaling, Jitter, Permute, TimeWarp)	RCGAN	C-GATS
RobustTAD	Synthetic Sines	0.74 ± 0.005	0.74 ± 0.007	0.27 ± 0.003	0.75 ± 0.006	0.23 ± 0.002	0.75 ± 0.004
	KPI	0.55 ± 0.011	0.56 ± 0.008	0.23 ± 0.010	0.59 ± 0.003	0.19 ± 0.009	0.67 ± 0.003
	RealTweets	0.54 ± 0.021	0.53 ± 0.011	0.32 ± 0.026	0.57 ± 0.009	0.18 ± 0.041	0.57 ± 0.010
	RealTraffic	0.67 ± 0.026	0.68 ± 0.029	0.37 ± 0.020	0.69 ± 0.012	0.27 ± 0.071	0.73 ± 0.015
	RealAWScloudWatch	0.34 ± 0.262	0.34 ± 0.089	0.06 ± 0.344	0.36 ± 0.218	0.04 ± 0.181	0.34 ± 0.192
	ArtificialWithAnomaly	0.36 ± 0.275	0.38 ± 0.118	0.33 ± 0.229	0.38 ± 0.136	0.05 ± 0.098	0.41 ± 0.107
SR-CNN	Synthetic Sines	0.73 ± 0.009	0.72 ± 0.002	0.18 ± 0.009	0.74 ± 0.001	0.16 ± 0.010	0.74 ± 0.003
	KPI	0.54 ± 0.008	0.55 ± 0.005	0.19 ± 0.009	0.56 ± 0.003	0.17 ± 0.011	0.58 ± 0.007
	RealTweets	0.46 ± 0.027	0.45 ± 0.019	0.24 ± 0.033	0.51 ± 0.009	0.19 ± 0.008	0.53 ± 0.009
	RealTraffic	0.64 ± 0.021	0.65 ± 0.017	0.33 ± 0.019	0.65 ± 0.028	0.26 ± 0.035	0.66 ± 0.020
	RealAWScloudWatch	0.25 ± 0.319	0.25 ± 0.283	0.04 ± 0.081	0.28 ± 0.193	0.01 ± 0.198	0.27 ± 0.199
	ArtificialWithAnomaly	0.28 ± 0.019	0.30 ± 0.174	0.24 ± 0.111	0.32 ± 0.081	0.12 ± 0.059	0.34 ± 0.011
NCAD	Synthetic Sines	0.77 ± 0.008	0.76 ± 0.001	0.30 ± 0.003	0.78 ± 0.019	0.27 ± 0.071	0.79 ± 0.001
	KPI	0.64 ± 0.006	0.66 ± 0.003	0.24 ± 0.009	0.67 ± 0.010	0.21 ± 0.004	0.69 ± 0.001
	RealTweets	0.57 ± 0.019	0.55 ± 0.014	0.32 ± 0.028	0.58 ± 0.010	0.20 ± 0.085	0.61 ± 0.009
	RealTraffic	0.69 ± 0.029	0.69 ± 0.033	0.43 ± 0.098	0.71 ± 0.051	0.28 ± 0.171	0.71 ± 0.019
	RealAWScloudWatch	0.35 ± 0.219	0.34 ± 0.118	0.11 ± 0.092	0.37 ± 0.071	0.07 ± 0.215	0.35 ± 0.111
	ArtificialWithAnomaly	0.39 ± 0.101	0.42 ± 0.213	0.36 ± 0.128	0.42 ± 0.098	0.13 ± 0.023	0.45 ± 0.091

Comparing how different DA methods impact the performance of different AD algorithms on various real-world datasets