Exploring Randomly Wired Neural Networks for Climate Model Emulation

William Yik^{1,2} Sam Silva^{2,3} Andrew Geiss⁴ Duncan Watson-Parris⁵

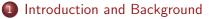
¹Harvey Mudd College, Claremont, California

²Department of Earth Sciences, University of Southern California Los Angeles, California

³Department of Civil and Environmental Engineering, University of Southern California Los Angeles, California

⁴Pacific Northwest National Laboratory, Richland, Washington

⁵Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford Oxford, UK



Yik et al. (USC)

Introduction and Background

2 Randomly Wired Neural Networks

B Experiments and Results

Yik et al. (USC)

 $\exists \rightarrow$

• Modeling many emissions scenarios is important, but expensive.

< ∃→

- Modeling many emissions scenarios is important, but expensive.
- Machine learning emulators can provide cheap, fast solutions. However, comparing emulators is difficult without standardized testing frameworks.

- Modeling many emissions scenarios is important, but expensive.
- Machine learning emulators can provide cheap, fast solutions. However, comparing emulators is difficult without standardized testing frameworks.
- Watson-Paris et al. (2022) introduced Climatebench, a standardized dataset and testing framework

Yik et al. (USC)

 Benchmark Earth system model: Norwegian Earth System Model v2 (NorESM2)

< A

- Benchmark Earth system model: Norwegian Earth System Model v2 (NorESM2)
- Inputs: four primary drivers of NorESM2 experiments
 - Long-lived: CO_2 , CH_4
 - Short-lived: SO₂, BC

5/13

USC

▶ ∢ ∃ ▶

- Benchmark Earth system model: Norwegian Earth System Model v2 (NorESM2)
- Inputs: four primary drivers of NorESM2 experiments
 - Long-lived: CO_2 , CH_4
 - Short-lived: SO_2 , BC
- Outputs: four predicted output variables (annual means)
 - Surface air temperature (TAS)
 - Diurnal temperature range (DTR)
 - Precipitation (PR)
 - 90th percentile of precipitation (PR90)

5/13

USC

Introduction and Background

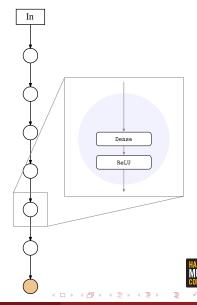
B) Experiments and Results

Yik et al. (USC)

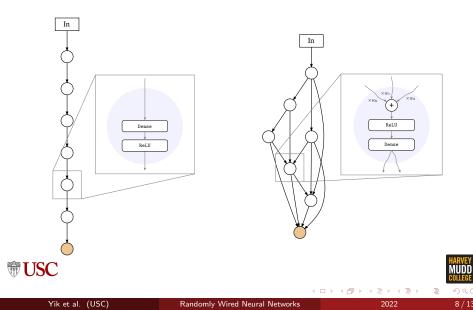
< ∃ >

Multilayer Perceptron (MLP)

- Most basic type of neural network
- Information flows in one direction from one layer to the next
- White circle: hidden dense layer and activation function



RandDense Networks



Introduction and Background

2 Randomly Wired Neural Networks

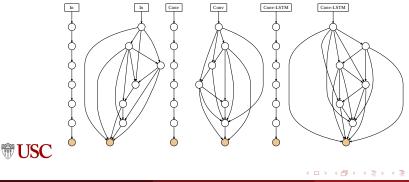
Experiments and Results

Yik et al. (USC)

 $\exists \rightarrow$

Experimental Setup

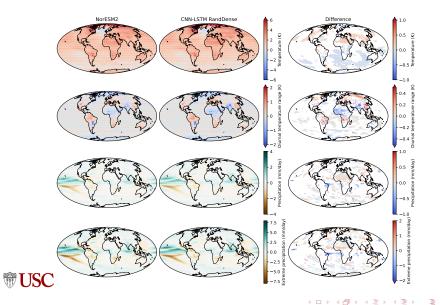
- Three baseline architectures: MLP, convolutional neural network (CNN), convolutional long short-term memory network (CNN-LSTM)
- 2-10 hidden layers, 1M and 10M parameters
- Generate 50 standard networks and 50 randomly wired networks for comparison



		TAS	DTR	PR	PR90
MLP	Standard RandDense	1.928 1.612	15.62 14.67	4.663 4.472	5.651 5.206
CNN	Standard RandDense	3.350 3.353	23.15 22.92	9.235 8.681	10.30 9.964
CNN-LSTM	Standard RandDense	0.262 0.263	11.85 11.66	2.861 2.775	3.880 3.810
ClimateBench		0.327	16.78	3.175	4.339

Table 1: Best total RMSE performance for each model class and predicted variable across all generated models, along with the original CNN-LSTM model from Watson-Parris et al. (2022). Lower is better, and the better RMSE between the standard and RandDense models is bolded.

NorESM2 vs. CNN-LSTM RandDense



Yik et al. (USC)

Randomly Wired Neural Networks

Key takeaways

- Randomization appears to provide performance benefits in multiple models!
- Same prediction speed as standard models
- Suggests replacing dense layers with randomly wired ones for the task of climate model emulation

Yik et al. (USC)

Key takeaways

- Randomization appears to provide performance benefits in multiple models!
- Same prediction speed as standard models
- Suggests replacing dense layers with randomly wired ones for the task of climate model emulation

Thank you! Correspondence to wyik@hmc.edu.

